This document gives pertinent information concerning the reissuance of the VPDES Permit listed below. This permit is being processed as Minor, Industrial permit. The discharge results from the operation of a 0.0144 MGD groundwater remediation system. This permit action consists of updating the proposed effluent limits to reflect the current Virginia WQS (effective 6 January 2011) and updating permit language as appropriate. The effluent limitations and special conditions contained in this permit will maintain the Water Quality Standards of 9VAC25-260 et seq. | 1. Facility Name and Mailing Address: | | The Nature Conservancy
21335 Signal Hill Plaza
Suite 100
Sterling, VA 20164 | SIC Code: | 4959 Sanitary Services | | |---------------------------------------|-----------------------------------|--|--------------------------------------|--|--| | | Facility Location: | 4245 North Fairfax Drive
Arlington, VA 22203 | County: | Arlington | | | | Facility Contact Name: | Justin Cooper / Project Geologist | Telephone Number: | 703-444-7000 | | | | Facility Email Address: | Justin.Cooper@tetratech.com | | | | | 2. | Permit No.: | VA0089796 | Expiration Date: | 30 January 2012 | | | | Other VPDES Permits: | Not Applicable | | | | | | Other Permits: | Not Applicable | | | | | | E2/E3/E4 Status: | Not Applicable | | | | | 3. | Owner Name: | The Nature Conservancy | | | | | | Owner Contact / Title: | Maggie Savage / Foulger-Pratt Management, Inc. | Telephone Number: | 703-273-1427 | | | | Owner Email Address: | MSavage@foulgerpratt.com | | | | | 4. | Application Complete Date: | 10 May 2012 | | | | | | Permit Drafted By: | Douglas Frasier | Date Drafted: | 1 November 2012 | | | | Draft Permit Reviewed By: | Alison Thompson | Date Reviewed: | 16 November 2012 | | | | Public Comment Period: | Start Date: 13 December 2012 | End Date: | 14 January 2013 | | | 5. | Receiving Waters Information: | See Attachment 1 for the Flow Freque | ency Determination. | | | | | Receiving Stream Name: | Lubber Run, UT (storm sewer) | Stream Code: | laXHX. | | | | Drainage Area at Outfall: | 0.61 square miles | River Mile: | 0.27 | | | | Stream Basin: | Potomac | Subbasin: | None | | | | Section: | 7 | Stream Class: | III | | | | Special Standards: | b | Waterbody ID: | VAN-A12R | | | | 7Q10 Low Flow: | 0.0 MGD | 7Q10 High Flow: | Not Applicable | | | | 1Q10 Low Flow: | 0.0 MGD | 1Q10 High Flow: | Not Applicable | | | | 30Q10 Low Flow: | 0.0 MGD | 30Q10 High Flow: | Not Applicable | | | | Harmonic Mean Flow: | Not Applicable | 30Q5 Flow: | Not Applicable | | | 6. | Statutory or Regulatory Basis for | Special Conditions and Effluent Limita | ations: | | | | | ✓ State Water Control Lav | N | EPA Guideline | s | | | | ✓ Clean Water Act | | ✓ Water Quality | Standards | | | | ✓ VPDES Permit Regulati | ion | ✓ Other: General VPDES Permit Regula | | | | | EPA NPDES Regulation | n | Sites, Gro | es From Petroleum Contaminated
oundwater Remediation and
etic Tests – 9VAC25-120 et seq. | | EPA Primary Drinking Water Standards. | 7. | Licensed Operator Re | equirements: Not Applicable | | | | | | | | |----|--------------------------|----------------------------------|----------------------------------|--|--|--|--|--|--| | 8. | Reliability Class: | Not Applicable | | | | | | | | | 9. | Permit Characterization: | | | | | | | | | | | ✓ Private | ✓ Effluent Limited | Possible Interstate Effect | | | | | | | | | Federal | Water Quality Limited | Compliance Schedule Required | | | | | | | | | State | Toxics Monitoring Program Requir | ed Interim Limits in Permit | | | | | | | | | WTP | Pretreatment Program Required | Interim Limits in Other Document | | | | | | | | | TMDL | # 10. Wastewater Sources and Treatment Description: In 1997, The Nature Conservancy constructed an eight story office building to serve as its headquarters. The site (groundwater and soils) was contaminated with petroleum products and chlorinated solvents. The petroleum contamination was attributed to the operation of a gasoline station which operated on the site from 1935 to 1953 and as an auto repair shop from 1957 to 1974. The chlorinated solvents originated from a dry cleaning store operating nearby. In February 1997, under the Virginia Voluntary Remediation Program, groundwater remediation was initiated as part of the construction activities. A VPDES permit was issued in January 1998 for the discharge of the remediated groundwater. The groundwater treatment system consists of an air stripper and associated equipment consisting of sump pumps, carbon absorbers and piping. Perforated piping beneath the building's sub grade floors collect and direct the groundwater to a sump where it is pumped to the air stripper. Air is introduced in order to strip the volatile organic compounds (VOCs) from the water. The exhaust air is routed through carbon filters prior to being vented to the atmosphere while the treated water is discharged via Outfall 001. The system is designed for 10 gallons per minute (gpm). Treated effluent from the system is discharged to a storm sewer along North Taylor Street, eventually draining to Lubber Run. See Attachment 2 for the NPDES Permit Rating Worksheet. See Attachment 3 for a facility schematic/diagram. | | O(| TABLE I
OUTFALL DESCRIPTION | | | | | | | | | | |-------------------|---------------------------------|--------------------------------|--------------------|---|--|--|--|--|--|--|--| | Outfall
Number | Discharge Sources | Treatment | Max 30-day
Flow | Latitude / Longitude 38° 52′ 57″ / 77° 06′ 45″ | | | | | | | | | 001 Ind | dustrial Wastewater/Groundwater | See Section 10 above | 0.0144 MGD | | | | | | | | | ## 11. Solids Treatment and Disposal Methods: There are no solids generated with the operation of this treatment system. # 12. Discharges Located Within Waterbody VAN-A12R: | | TABLE 2
DISCHARGES WITHIN WATERBODY VAN-A12R | | | | | | | | |---------------|---|--------------------------------|------------------|--|--|--|--|--| | Permit Number | Facility Name | Туре | Receiving Stream | | | | | | | VA0025143 | Arlington County Water Pollution Control Facility | Municipal
Individual Permit | Four Mile Run | | | | | | | <i>-</i> | TABLE 2 (continued) | 22 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | ֏ | |---------------|---|--|--------------------| | Permit Number | Facility Name | Туре | Receiving Stream | | VAR051296 | US Joint Base - Myer Henderson Hall | Stormwater Industrial
General Permit | Potomac River, UT | | VAG110087 | Virginia Concrete Company, Inc. – Shirlington | Ready Mix Concrete
General Permit | Four Mile Run | | VAG830428 | R F and P Facility | | Occoquan River, UT | | VAG830393 | 1716 Wilson LLC Property | | Potomac River | | VAG830340 | 1812 Holdings LLC Property | | Little River | | VAG830433 | Lodestar Inc. Property | | Rocky Run | | VAG830436 | Pentagon Industrial Complex | Petroleum | Roaches Run | | VAG830101 | Ballston Common Associates LP | Remediation General Permits | Lubber Run | | VAG830321 | Halstead at Arlington | | Long Branch | | VAG830337 | Shell 139445 – Columbia Pike | | Four Mile Run | | VAG830419 | Founders Square Lot 3A | · | Doctors Branch | | VAG830420 | Alexandria City Tax Map 054 04 10 | | Potomac River | | VAG750173 | BMW of Arlington | | Four Mile Run | | VAG750208 | Avis Car Rental – 3206 10 th St N | | Rocky Run | | VAG750155 | Universal Air and Vacuum Service | Car Wash General Permits | Four Mile Run | | VAG750156 | BP Amoco 84667 | | Four Mile Run | | VAG750192 | C and G Imports Wilson Blvd | | Spout Run | - 13. Material Storage: There are no chemicals used or stored at this facility. - 14. Site Inspection: Performed by DEQ-NRO staff on 17 November 2012 (see Attachment 5). # 15. Receiving Stream Water Quality and Water Quality Standards: # a. Ambient Water Quality Data This facility discharges to an unnamed tributary to Lubber Run (storm sewer). There is no water quality monitoring data for the receiving stream. The nearest downstream DEQ monitoring station is 1aFOU004.22, located on Fourmile Run at the Route 244 bridge crossing, approximately 2.4 miles downstream of Outfall 001. The following is the water quality summary for this segment of Fourmile Run, as taken from the Draft 2012 Integrated Report*: Class III, Section 7, special standards "b". DEQ ambient monitoring stations 1aFOU001.92, at West Glebe Road, 1aFOU002.02, upstream of South Glebe Road, 1aFOU004.22, at Route 244, and 1aFOU005.60, at Carlyn Springs Road. Citizen monitoring stations 1aFOU-1-ACM, 1aFOU-2-ACM, 1aFOU-3-ACM, 1aFOU-4-ACM, 1aFOU-5-ACM, 1aFOU-6-ACM, 1aFOU-7-ACM, 1aFOU-8-ACM, 1aFOU-9-ACM, and 1aFOU-11-ACM. E. coli monitoring finds a bacterial impairment, resulting in an impaired classification for the recreation use. The E. coli data collected by the citizen monitoring group indicate that a water quality issue may exist for the recreation use. A bacteria TMDL for the Fourmile Run watershed has been completed and approved. The aquatic life and wildlife uses are considered fully supporting, with the aquatic life use noted with observed effects, described above. The fish consumption use is fully supporting with observed effects. SPMD data revealed an exceedance of the human health criteria of 0.64 parts per billion (ppb) for polychlorinated biphenyls (PCBs), which is noted with an observed effect. A PCB TMDL for the tidal Potomac River watershed has been completed and approved. *The Draft 2012 Integrated Report (IR) has been through the public comment period and reviewed by EPA. The 2012 IR is currently being
finalized and prepared for release. # b. 303(d) Listed Stream Segments and Total Maximum Daily Loads (TMDLs) | | og C | IMPAIR | TABLE 3
RMENTS/TMDL | | ŧ.ji | | i. | |-------------------|---------------------|-----------------|--------------------------|--|--------|---------------|------------------| | Waterbody
Name | Impaired Use | Cause | Distance
From Outfall | TMDL
completed | WLA | Basis for WLA | TMDL
Schedule | | | Im | pairment Inforn | nation in the Dra | ft 2012 Integrated Re | eport* | | | | Fourmile
Run | Recreation | E. coli | 1.5 miles | Four Mile Run
Bacteria
5/31/2002 | None | | N/A | | Fourmile | Fish
Consumption | РСВ | 5.1 miles | Tidal Potomac
PCB 10/31/2007 | None | | N/A | | Run (Tidal) | | Chlordane | 5.1 miles | N/A | | | 2022 | ^{*}The Draft 2012 Integrated Report (IR) has been through the public comment period and reviewed by EPA. The 2012 IR is currently being finalized and prepared for release. The full planning statement is found in Attachment 6. ## Receiving Stream Water Quality Criteria Part IX of 9VAC25-260(360-550) designates classes and special standards applicable to defined Virginia river basins and sections. The receiving stream Lubber Run, UT, is located within Section 7 of the Potomac River Basin and classified as Class III water. At all times, Class III waters must achieve a dissolved oxygen (D.O.) of 4.0 mg/L or greater, a daily average D.O. of 5.0 mg/L or greater, a temperature that does not exceed 32°C and maintain a pH of 6.0-9.0 standard units (S.U.). Attachment 7 details other water quality criteria applicable to the receiving stream. # d. Receiving Stream Special Standards The State Water Control Board's Water Quality Standards, River Basin Section Tables (9VAC25-260-360, 370 and 380) designates the river basins, sections, classes and special standards for surface waters of the Commonwealth of Virginia. The receiving stream, Lubber Run, UT, is located within Section 7 of the Potomac River Basin. This section has been designated with a special standard of "b". Special Standard "b" (Potomac Embayment Standards) established effluent standards for all sewage plants discharging into Potomac River embayments and for expansions of existing plants discharging into non-tidal tributaries of these embayments. 9VAC25-415, Policy for the Potomac Embayments, controls point source discharges of conventional pollutants into the Virginia embayment waters of the Potomac River and their tributaries from the fall line at Chain Bridge in Arlington County to the Route 301 Bridge in King George County. The regulation sets effluent limits for BOD₅, total suspended solids, phosphorus and ammonia to protect the water quality of these high profile waterbodies. The Potomac Embayment Standards are not applicable to this discharge since corrective action remediation systems were explicitly exempt (9VAC25-415-30.D.) and this operation does not discharge those pollutants of concern. # e. Threatened or Endangered Species The Virginia DGIF Fish and Wildlife Information System Database was searched on 31 July 2012 for records to determine if there are threatened or endangered species in the vicinity of the discharge. The following threatened or endangered species were identified within a 2 mile radius of the discharge: Atlantic Sturgeon; Brook Floater (mussel); Wood Turtle; Upland Sandpiper (song bird); Loggerhead Shrike (song bird); Henslow's Sparrow; Appalachian Grizzled Skipper (butterfly); Bald Eagle; and Migrant Loggerhead Shrike (song bird). The limits proposed in this draft permit are protective of the Virginia Water Quality Standards and protect the threatened and endangered species found near the discharge. # 16. Antidegradation (9VAC25-260-30): All state surface waters are provided one of three levels of antidegradation protection. For Tier 1 or existing use protection, existing uses of the water body and the water quality to protect these uses must be maintained. Tier 2 water bodies have water quality that is better than the water quality standards. Significant lowering of the water quality of Tier 2 waters is not allowed without an evaluation of the economic and social impacts. Tier 3 water bodies are exceptional waters and are so designated by regulatory amendment. The antidegradation policy prohibits new or expanded discharges into exceptional waters. The receiving stream is located within a highly urbanized area and at times the stream flow will be comprised of only effluent. It is staff's best professional judgment that such streams are Tier 1. Permit limits proposed have been established which will result in attaining and/or maintaining all water quality criteria which apply to the receiving stream, including narrative criteria. These limitations will provide for the protection and maintenance of all existing uses. ## 17. Effluent Screening and Effluent Limitation Development: To determine water quality-based effluent limitations for a discharge, the suitability of data must first be determined. Data is suitable for analysis if one or more representative data points are equal to or above the quantification level ("QL") and the data represent the exact pollutant being evaluated. ## a. Effluent Screening: Effluent data obtained from the June 2008 – May 2012 Discharge Monitoring Reports (DMRs) has been reviewed and determined to be suitable for evaluation. Please see **Attachment 8** for a summary of effluent data. ## b. Effluent Limitations, Outfall 001 - Toxic Pollutants 9VAC25-31-220.D. requires limits be imposed where a discharge has a reasonable potential to cause or contribute to an instream excursion of water quality criteria. Those parameters with WLAs that are near effluent concentrations are evaluated for limits. The VPDES Permit Regulation at 9VAC25-31-230.D requires that monthly and weekly average limitations be imposed for continuous discharges from POTWs and monthly average and daily maximum limitations be imposed for all other continuous non-POTW discharges. Staff compared the treatment system capabilities, the Virginia Water Quality Standards (9VAC25-260), the EPA National Primary Drinking Water Standards and the *General VPDES Permit for Discharges from Petroleum Contaminated Sites*, *Groundwater Remediation and Hydrostatic Tests* (9VAC25-120 et seq.), in order to develop the appropriate limitations for this treatment system. Benzene, toluene, ethylbenzene and xylene are common constituents of automotive gasoline. Effluent limitations for benzene, toluene and xylene were based on staff's best professional judgement regarding the removal capability of the air stripper during the last permit reissuance. These limitations are proposed to be carried forward with this reissuance. The limitation for ethylbenzene was based on aquatic chronic toxicity documented in the Fact Sheet for the General VPDES Permit for Discharges from Petroleum Contaminated Sites, Groundwater Remediation and Hydrostatic Tests (9VAC25-120 et seq.); as was1,1,1-trichloroethane. These limitations will also be carried forward. A limit of 15 μ g/L for 1,2-dichlorobenzene was based on chronic toxicity during the previous reissuance. This is more stringent than the limit set forth in the General VPDES Permit for Discharges from Petroleum Contaminated Sites, Groundwater Remediation and Hydrostatic Tests (9VAC25-120 et seq.) at 15.8 μ g/L. Due to antibacksliding provisions located at 9VAC25-31-220.L., staff proposes that the current limitation be carried forward with this reissuance. The following effluent limitations were based on the Drinking Water Standards maximum permissible level of contamination (MCL) during the last reissuance and are proposed to be carried forward with this reissuance: 1,1-dichloroethylene; cis 1,2-dichloroethylene; trans 1,2-dichloroethylene; dichloroethylene; trichloroethylene (TCE); tetrachloroethylene (PCE); 1,2-dichloroethane; and vinyl chloride. Chloroform limitations are based on the General VPDES Permit for Discharges from Petroleum Contaminated Sites, Groundwater Remediation and Hydrostatic Tests (9VAC25-120 et seq.) at 100 µg/L. The effluent limitation for carbon tetrachloride was based on the Human Health related Water Quality Standards for Public Water Supplies during the last reissuance. It was staff's best professional judgement during that time that this limit was most protective of the receiving stream and public health even though this facility does not discharge into a public water supply. It is proposed the current limit be carried forward with this reissuance. Table 4 summarizes the above discussion. | TABLE 4 EFFLUENT LIMITATION MATRIX (1) | | | | | | | | | | | |--|-------------------------|--------------------------|-----------------------------------|---|--|----------------------------|--|--|--|--| | Parameter | Technology
Installed | Drinking
Water
MCL | Water
Quality
Standards (2) | Petroleum
General
Permit ⁽³⁾ | Best
Professional
Judgement ⁽⁴⁾ | Proposed
Effluent Limit | | | | | | Benzene | 5 | 5 | 510 | 50 | | 5 | | | | | | Toluene | 5 | 1,000 | 6000 | 175 | | 5. | | | | | | Ethylbenzene | | 700 | 2100 | 320 | | 320 | | | | | | Total Xylene | 5 | 10,000 | | 33 | | 5 | | | | | | Dichloromethane | | 5 | | | | 5 | | | | | | Tetrachloromethane
(Carbon Tetrachloride) | | 5 | 16 | 2.5 | 2 | 2 | | | | | | 1,1-Dichloroethylene (1,1 DCE) | | 7 | 7,100 | 7 | | 7 | | | | | | cis 1,2-Dichloroethylene | | 70 | ** | 70 | | 70 | | | | | | trans 1,2-Dichloroethylene | | 100 | 10,000 | 100 | | 100 | | | | | | Trichloroethylene (TCE) | ** | 5 | 300 | 5 | | 5 | | | | | | Tetrachloroethylene (PCE) | | 5 | 33 | 5 | | 5 | | | | | | 1,2-Dichloroethane (1,2 DCA) | | 5 | 370 | 990 | | 5 | | | | | | 1,1,1 Trichloroethane | | 200 | | 112
 | 112 | | | | | | Chloroform | | | 11,000 | 100 | | 100 | | | | | | Vinyl Chloride | | 2 | 24 | 2 | | 2 | | | | | | 1,2-Dichlorobenzene | | 600 ⁽⁵⁾ | 1,300 | 15.8 | 15 | 15 | | | | | ⁽¹⁾ Units are in micrograms per liter (µg/L). The total volatile organic compound (VOC) is limited so that VOCs that were not detected or evident during the issuance of this permit are not discharged in toxic amounts. The Total VOC limit is determined by totaling the limits of the individual VOCs of concern. ⁽²⁾ Human Health - All Other Surface Waters (effective 6 January 2011). ^{(3) 9}VAC25-120 et seq. (effective 26 February 2008). ⁽⁴⁾ Per last reissuance. ⁽⁵⁾ Primary Drinking Water MCL lists this pollutant as ortho-dichlorobenzene which is the same chemical. ## c. Effluent Limitations and Monitoring, Outfall 001 - Conventional and Non-Conventional Pollutants pH limitations are set at the water quality criteria. # d. Effluent Limitations and Monitoring Summary The effluent limitations are presented in the following table. Limits were established for benzene; toluene; ethylbenzene; total xylene; carbon tetrachloride; chloroform; 1,1,1-trichloroethane; 1,2-dichlorobenzene; 1,1-dichloroethylene; cis 1,2-dichloroethylene; trans 1,2-dichloroethylene; dichloromethane; trichloroethylene (TCE); tetrachloroethylene (PCE); 1,2-dichloroethane; vinyl chloride and 1,2-dichlorobenzene. Sample Types are in accordance with the recommendations in the VPDES Permit Manual. The Sample Frequencies were reduced from once per calendar quarter to once per six (6) months (semi-annual) during the last reissuance based upon the permittee's request and performance of the air-stripper during the previous permit term. This frequency will be carried forward with this reissuance. # 18. Antibacksliding: All limits in this permit are at least as stringent as those previously established. Backsliding does not apply to this reissuance. # 19. Effluent Limitations/Monitoring Requirements: Maximum Flow of this remediation operation is 0.0144 MGD. Effective Dates: During the period beginning with the permit's effective date and lasting until the expiration date. | PARAMETER | BASIS
FOR | DIS | MONITORING
REQUIREMENTS | | | | | |---|--------------|-----------------|----------------------------|----------|----------------|--------------|-------------| | | LIMITS | Monthly Average | Daily Maximum | Minimum | <u>Maximum</u> | Frequency | Sample Type | | Flow (MGD) | NA | NL | NA | NA | NL | 1/ 6M | Estimate | | pH | 3 | NA | NA | 6.0 S.U. | 9.0 S.U. | 1/ 6M | Grab | | Benzene | 2,4 | NA | NA | NA | 5.0 μg/L | 1/6M | Grab | | Toluene | 2 | NA | NA | NA | 5.0 μg/L | 1/6M | Grab | | Ethylbenzene | 2,5 | NA | NA | NA | 320 μg/L | 1/6M | Grab | | Total Xylene | 2 | NA | NA | NA | 5.0 μg/L | 1/ 6M | Grab | | Dichloromethane | 2,4 | NA | NA | NA | 5.0 μg/L | 1/ 6M | Grab | | Tetrachloromethane
(Carbon Tetrachloride) | 2 | NA | NA | NA | 2.0 μg/L | 1/6M | Grab | | 1,1-Dichloroethylene (1,1 DCE) | 2,4,5 | NA | NA | NA | 7.0 μg/L | 1/6M | Grab | | cis 1,2-Dichloroethylene | 2,4,5 | NA | NA | NA | 70 μg/L | 1/6 M | Grab | | trans 1,2-Dichloroethylene | 2,4,5 | NA | NA | NA | 100 μg/L | 1/ 6M | Grab | | Trichloroethylene (TCE) | 2,4,5 | NA | NA | NA | 5.0 μg/L | 1/ 6M | Grab | | Tetrachloroethylene (PCE) | 2,4,5 | NA | NA | NA | 5.0 μg/L | 1/6M | Grab | | 1,2-Dichloroethane (1,2 DCA) | 2,4 | NA | NA | NA | 5.0 μg/L | 1/6M | Grab | | 1,1,1 Trichloroethane | 2,5 | NA | NA | NA | 112 μg/L | 1/6M | Grab | | Chloroform | 2,5 | NA | NA | NA | 100 μg/L | 1/6M | Grab | | Vinyl Chloride | 2,4,5 | NA | NA | NA | 2.0 μg/L | 1/6M | Grab | | 1,2-Dichlorobenzene | 2 | NA | NA | NA | 15 μg/L | 1/6M | Grab | | Total Volatile Organic Compounds (Total VOCs) | 2 | NA | NA | NA | 763 μg/L | 1/6M | Calculated | The basis for the limitations codes are: 1. Federal Effluent Requirements 2. Best Professional Judgement Water Quality Standards 4. Primary Drinking Water Standards MCL General VPDES Permit Regulation for Discharges From Petroleum Contaminated Sites, Groundwater Remediation and Hydrostatic Tests (9VAC25-120 et seq.) MGD = Million gallons per day. NA = Not applicable. NL = No limit; monitor and report. S.U. = Standard units. Estimate = Reported flow is to be based on the technical evaluation of the sources contributing to the discharge. Grab = An individual sample collected over a period of time not to exceed 15-minutes. 1/6M = Once every six (6) months.* ^{*}The semiannual monitoring periods shall be January through June and July through December. The DMR shall be submitted no later than the 10th day of the month following the monitoring period. ## 20. Other Permit Requirements: Part I.B. of the permit contains quantification levels and compliance reporting instructions 9VAC25-31-190.L.4.c. requires an arithmetic mean for measurement averaging and 9VAC25-31-220.D. requires limits be imposed where a discharge has a reasonable potential to cause or contribute to an in-stream excursion of water quality criteria. Specific analytical methodologies for toxics are listed in this permit section as well as quantification levels (QLs) necessary to demonstrate compliance with applicable permit limitations or for use in future evaluations to determine if the pollutant has reasonable potential to cause or contribute to a violation. Required averaging methodologies are also specified. # 21. Other Special Conditions: - a. O&M Manual Requirement. Required by VPDES Permit Regulation, 9VAC25-31-190.E. The permittee shall maintain a current Operations and Maintenance (O&M) Manual. The permittee shall operate the treatment works in accordance with the O&M Manual and shall make the O&M Manual available to Department personnel for review upon request. Any changes in the practices and procedures followed by the permittee shall be documented in the O&M Manual within 90 days of the effective date of the changes. Non-compliance with the O&M Manual shall be deemed a violation of the permit. - b. <u>Materials Handling/Storage</u>. 9VAC25-31-50.A prohibits the discharge of any wastes into State waters unless authorized by permit. Code of Virginia §62.1-44.16 and §62.1-44.17 authorize the Board to regulate the discharge of industrial waste or other waste. - c. <u>TMDL Reopener</u>. This special condition allows the permit to be reopened if necessary to bring it into compliance with any applicable TMDL that may be developed and approved for the receiving stream. - 22. <u>Permit Section Part II.</u> Part II of the permit contains standard conditions that appear in all VPDES Permits. In general, these standard conditions address the responsibilities of the permittee, reporting requirements, testing procedures and records retention. # 23. Changes to the Permit from the Previously Issued Permit: - a. Special Conditions: - The Water Quality Criteria Reopener was removed with this reissuance since it is not applicable to this discharge. - b. Monitoring and Effluent Limitations: None. - c. Other: - Part II of the permit has been updated to include VELAP requirements. - 24. Variances/Alternate Limits or Conditions: None. # 25. Public Notice Information: First Public Notice Date: 12 December 2012 Second Public Notice Date: 19 December 2012 Public Notice Information is required by 9VAC25-31-280 B. All pertinent information is on file and may be inspected, and copied by contacting the: DEQ Northern Regional Office; 13901 Crown Court; Woodbridge, VA 22193; Telephone No. (703) 583-3873; Douglas.Frasier@deq.virginia.gov. See **Attachment 9** for a copy of the public notice document. Persons may comment in writing or by email to the DEQ on the proposed permit action, and may request a public hearing, during the comment period. Comments shall include the name, address and telephone number of the writer and of all persons represented by the commenter/requester and shall contain a complete, concise statement of the factual basis for comments. Only those comments received within this period will be considered. The DEQ may decide to hold a public hearing, including another comment period, if public response is significant and there are substantial, disputed issues relevant to the permit. Requests for public hearings shall state 1) the reason why a hearing is requested; 2) a brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requester, including how and to what extent such interest would be directly and adversely affected by the permit; and 3) specific references, where possible, to terms and conditions of the permit with suggested revisions. Following the comment period, the Board will make a determination regarding the proposed permit action. # VPDES PERMIT PROGRAM FACT SHEET VA0089796 PAGE 10 of 10 This determination will become effective, unless the DEQ grants a public hearing. Due notice of any public hearing will be given. The public may request an electronic copy of the draft permit and fact sheet or review the draft permit and application at the DEQ Northern Regional Office by appointment. # 26. Additional Comments: Previous Board Action(s): None. Staff Comments: None. **Public Comment:** No comments were received during the public notice. EPA Checklist: The checklist can be found in Attachment 10. # Fact Sheet Attachments Table of Contents Nature Conservancy VA0089796 2013 Reissuance | Attachment 1 | Flow Frequency Determination | |--------------|--| | Attachment 2 | NPDES Permit Rating Worksheet | | Attachment 3 | Facility Schematic/Diagram | | Attachment 4 | Topographic Map | | Attachment 5 | Site Inspection Report | | Attachment 6 | Planning Statement | | Attachment 7 | Water Quality Criteria / Wasteload Allocation Analysis | | Attachment 8 |
June 2008 – May 2012 Effluent Data | | Attachment 9 | Public Notice | | | | EPA Checklist Attachment 10 ## MEMORANDUM DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER DIVISION Water Quality Assessments and Planning 629 E. Main Street P.O. Box 10009 Richmond, Virginia 23240 Flow Frequency Determination The Nature Conservancy - Issuance TO: James Engbert, NRO Paul E. Herman, P.E., WQAP FROM: DATE: October 28, 1997 COPIES: Ron Gregory, Charles Martin, File Northern VA. Region Dept. of Env. Quality The Nature Conservancy is proposing a discharge to an unnamed tributary to Lubber Run in Arlington, VA. Stream flow frequencies are required at this site for use by the permit writer in developing effluent limitations for the VPDES permit. At the discharge point, the receiving stream is a storm sewer which drains to Lubber Run. The flow frequencies for storm sewers are 0.0 cfs for the 1010, 7010, 3005, high flow 1010, high flow 7Q10, and harmonic mean. Flow frequencies have been determined for the perennial Lubber Run at the Fairfax Drive bridge. The USGS operated a continuous record gage on the Fourmile Run at Alexandria, VA (#01652500) from 1951 to 1969, from 1973 to 1975 and from 1979 to 1982. The gage was located at the Shirlington Road bridge in Alexandria, VA. The flow frequencies for the gage and the discharge point are presented below. values at the Fairfax Drive bridge over Lubber Run were determined by drainage area proportions and do not address any withdrawals, discharges, or springs lying upstream. # Fourmile Run at Alexandria, VA (#01652500): | Drainage Area | = 13.8 mi ⁻ | * : | |------------------------------------|---|----------------------| | 1Q10 = 0.88 cfs | High Flow 1010 = | Cfs | | 7Q10 = 1.1 cfs | High Flow 7Q10 = | | | 30Q5 = 2.4 cfs | | | | 3042 - 2.4 CIR | HM = 5.1 | Cfs | | Lubber Run at Fairfax D | ive bridge: | For such a small | | | - | thainage area, it | | Drainage Area | € 0.61 mi ² | • | | 1010 = 0.04 cfs | | | | TATA - 0.04 CIS | Htnh Plaw 1010 = | as Is a dry stream. | | 7010 = 0.05 cfe | High Flow 1010 = | cfs is a dry stream. | | 7010 = 0.04 cfs
3005 = 0.11 cfs | High Flow 1Q10 =
High Flow 7Q10 =
HM = 0.23 | cfs "H LOW | Attachment 1 7010 = O. HM = 0.23 cfs The high flow months were not contiguous, therefore, high flow frequencies could not be determined. If you have any questions concerning this analysis, please let me know. | | | | | | | | | X | Regular Additio | n | | |--------------|------------------------------------|---------------|-----------|---------------|----------------|--------------|-------------------------------|-------|---|------------------|--------| | | | | | | | | | | Discretionary A | ddition | | | VP | DES NO. : ၂ | VA0089 | 9796 | · | | | | Ш | Score change, | but no status Cl | hange | | | | | | | | | | | Deletion | | | | Faci | lity Name: | The Na | ture C | Conservar | тсу | | | | | | | | City | / / County: | Arlingto | on / Ar | lington | | | | | | | | | Receiv | ing Water: | Lubber | Run, | UT | | | | | , | | | | Wate | erbody ID: | VAN-A | 12R | | | | | | | | | | | ility a steam ele | | | (sic =4911) | with one or | | | | al separate storm | sewer serving | a | | | ne following cha | | | | | <u> </u> | tion greater tha | | | | | | | utput 500 MW or | greater (not | using a | cooling pand | l/lake) | ├ ─── | S; score is 700 | (stop | here) | | | | 3. Cooling v | r power Plant
water discharge g | reater than | 25% of | the receiving | stream's 7Q10 | X NO | ; (continue) | | | | | | flow rater | naara ia 600 (at | an haral | | IO: /aaatin: | \ | | | | | | | | Yes; s | score is 600 (st | op nere) | X | NO; (continu | ie) | | | | | | | | | R 1: Toxic I | Pollutar | nt Pot | ential | | | | | | | | | PCS SIC | Code: | | Prir | mary Sic Co | de: 4959 | | Other Sic Cod | es: | | _ | | | Industrial | Subcategory C | ode: <u>0</u> | 00 | | (Code 000 if | f no subca | itegory) | | | | | | Datormina | e the Tovicity o | otential fro | m Ann | ondiv A. Re | cure to use t | ha TOTAI | tovicity notanti | al co | lumn and check | onel | | | Toxicity | | de Poi | | | cicity Group | Code | Points | ar co | Toxicity Grou | • | Points | | No pro | | | | , i, | • | | | | | • | | | | streams |) d |) | | 3. | 3 | 15 | | 7. | 7 | 35 | | X 1. | | 1 5 | 5 | | 4. | 4 | 20 | | 8. | 8 | 40 | | 2. | 2 | 2 1 | 0 | | 5. | 5 | 25 | | 9. | 9 | 45 | | | | | | | 6. | 6 | 30 | | 10. | 10 | 50 | | | | | | | | | | | Code Numbe | r Checked: | 1 | | | | | | | | | | | Total Points | Factor 1: | 5 | | | | | | | | | | | | | | | FACTO | R 2: Flow/S | tream F | low \ | /olume (d | Complete eithe | er Section | A or Section B; | chec | ck only one) | | | | Continu A | \0/= ataata | Elaw Oak | | أم ممط | | | Cardina D. 181 | | | . Fla Oamaida. | اه ۵۰ | | | . – Wastewater
Vastewater Typ | - | consid | | | \/\/act | Section B – vv
ewater Type | | water and Strean
Percent of Instream | | | | | see Instructions | | | Code | Points | | Instructions) | • | | Stream Low Flow | | | Type I: | Flow < 5 MG | D | | 11 | 0 | | | | | Code | Points | | | Flow 5 to 10 | MGD | | 12 | 10 | Т | ype I/III: | | < 10 % | 41 | 0 | | | Flow > 10 to | 50 MGD | | 13 | 20 | | | | 10 % to < 50 % | 42 | 10 | | | Flow > 50 MG | GD | | 14 | 30 | | | | > 50% | 43 | 20 | | Type II: | Flow < 1 MG | D | | 21 | 10 | | Type II: | | < 10 % | 51 | 0 | | •• | Flow 1 to 5 M | MGD | | 22 | 20 | | • | | 10 % to < 50 % | 52 | 20 | | | Flow > 5 to 1 | 0 MGD | | 23 | 30 | | | | > 50 % | X 53 | 30 | | | Flow > 10 M(| | | 24 | 50 | | | | | | | | . | | | | | | | | | | | | | Type III: | Flow < 1 MG | | | 31 | 0 | | | | | | | | | Flow 1 to 5 M | | Ш | 32 | 10 | | | | | | | | | Flow > 5 to 1 | | \square | 33 | 20 | | | | | | | | | Flow > 10 M(| JD | | 34 | 30 | | | | | | | | • | | | | | | | | Cod | de Checked from | Section A or B | : 53 | | | | | | | | | | | | oints Factor 2 | | | | | | | | | | | | | | | # **FACTOR 3: Conventional Pollutants** (only when limited by the permit) | A. Oxygen Demanding Pollutants: (che | ck one) BOD | COD | X Other: Volatile Organic C | Compounds | |--|--|--|---|---------------------| | Permit Limits: (check one) | X < 100 lbs/day
100 to 1000 lbs/day
> 1000 to 3000 lbs/day
> 3000 lbs/day | Code
1
2
3
4 | Points 0 5 15 20 Code Number Checked: Points Scored: | 1
0 | | B. Total Suspended Solids (TSS) | | | _ | | | Permit Limits: (check one) | < 100 lbs/day 100 to 1000 lbs/day > 1000 to 5000 lbs/day > 5000 lbs/day | Code 1 2 3 4 | Points 0 5 15 | | | | | | Code Number Checked: | NA | | C. Nitrogen Pollutants: (check one) | Ammonia | Other: | Points Scored: _ | 0 | | FACTOR 4: Public Health Imp Is there a public drinking water supply I the receiving water is a tributary)? A pu ultimately get water from the above refe | ocated within 50 miles downstre
ublic drinking water supply may
erence supply. | Code
1
2
3
4
4
eam of the effluent dis
include infiltration gal | Points 0 5 15 20 Code Number Checked: Points Scored: Total Points Factor 3: charge (this include any body of waleries, or other methods of conveyant | NA 0 0 ter to which | | X NO; (If πο, go to Factor 5) | | | | | | Determine the <i>Human Health</i> potential the <i>Human Health</i> toxicity group column Toxicity Group Code Points | n – check опе below) | | | | | No process 0 0 | | ode Points
3 0 | Toxicity Group Code 7. 7 | Points
15 | | waste streams | | 4 0 | 8. 8 | 20 | | 2. 2 0 | 5. | 5 5 | 9. 9 | 25 | | | 6. | 6 10 | 10. 10 | 30 | | | | | Code Number Checked: Total Points Factor 4: | NA
0 | # **FACTOR 5: Water Quality Factors** A. Is (or will) one or more of the effluent discharge limits based on water quality factors of the receiving stream (rather than technology-base federal effluent guidelines, or technology-base state effluent guidelines), or has a wasteload allocation been to the discharge | | Code | Points | |------|------|--------| | YES | 1 | 10 | | X NO | 2 | 0 | B. Is the receiving water in compliance with applicable water quality standards for pollutants that are water quality limited in the permit? | | Code | Points | |-------|------|--------| | X YES | 1 | 0 | | NO NO | 2 | 5 | C. Does the effluent discharged from this facility exhibit the reasonable potential to violate water quality standards due to whole effluent toxicity? | YES | Code
1 | | | | Points
10 | | | | | | |---------------------------------------|-----------|---|-----|----------|--------------|---------|---|------------|---|--| | X NO | 2 | | | | 0 | | | | | | | Code Number Checked: Points Factor 5: | A - | 2 | - + | В
В - | 1 0 |
C - | 2 | - <u>-</u> | 0 | | # **FACTOR 6: Proximity to Near Coastal Waters** A. Base Score: Enter flow code here (from factor 2) 53 | HPRI# | Cada | LIDO! Cares | Enter the multiplication factor that corre | | |---------------|---------|-------------|--|-----------------------| | nPKI# | Code | HPRI Score | Flow Code | Multiplication Factor | | 1 | 1 | 20 | 11, 31, or 41 | 0.00 | | _ | | | 12, 32, or 42 | 0.05 | | 2 | 2 | 0 | 13, 33, or 43 | 0.10 | | _ | | | 14 or 34 | 0.15 | | 3 | 3 | 30 | 21 or 51 | 0.10 | | _ | | | 22 or 52 | 0.30 | | 4 | 4 | 0 | 23 or 53 | 0.60 | | | | | 24 | 1.00 | | 5 | 5 | 20 | | | | HPRI code che | cked: 4 | | | | B. Additional Points - NEP Program For a facility that has an HPRI code of 3, does the facility
discharge to one of the estuaries enrolled in the National Estuary Protection (NEP) program (see instructions) or the Chesapeake Bay? C. Additional Points – Great Lakes Area of Concern For a facility that has an HPRI code of 5, does the facility discharge any of the pollutants of concern into one of the Great Lakes' 31 area's of concern (see instructions)? | | Code | Points | | | | | | Code | | Points | | | | |---|-------------|--------------------|-----------|---|---|---|---|------|-----|--------|---|---|--| | | 1 | 10 | | | | | | 1 | | 10 | | | | | X | 2 | 0 | | | | | X | 2 | | 0 | | | | | | Cor | de Number Checked: | Δ | 4 | | В | 2 | | _ | 2 | | | | | | 4 0. | | · · · · - | | | | | | · - | | _ | | | | | | Points Factor 6: | Α | 0 | + | В | 0 | + | С | 0 | = | 0 | | # **SCORE SUMMARY** | Facto | <u>or</u> | <u>Description</u> | <u>Total F</u> | Points | |--------------------------|------------------------------|--|------------------------------------|--------------------------------| | 1 | | Toxic Pollutant Potential | 5 | | | 2 | | Flows / Streamflow Volume | 30 |). <u></u> | | 3 | | Conventional Pollutants | 0 | | | 4 | | Public Health Impacts | 0 | | | 5 | | Water Quality Factors | 0 | | | 6 | P | roximity to Near Coastal Waters | 0 | | | | | TOTAL (Factors 1 through 6) | 35 | 5 | | S1. Is the total score | e equal to or grater than 80 | YES; (Facility is a Majo | or) X NO | 0 | | S2. If the answer to | the above questions is no, | would you like this facility to be dis | cretionary major? | | | X NO YES; (Add s Reason: | i00 points to the above scor | e and provide reason below: | | | | | | | | | | | | | | | | NEW SCORE : | 35
35 | | | | | | | Permit | Reviewer's Name :
Phone Number: | Douglas Frasier (703) 583-3873 | Date: 23 October 2012 Attachment 4 # COMMONWEALTH of VIRGINIA # DEPARTMENT OF ENVIRONMENTAL QUALITY Douglas W. Domenech Secretary of Natural Resources NORTHERN REGIONAL OFFICE 13901 Crown Court, Woodbridge, Virginia 22193 (703) 583-3800 Fax (703) 583-3821 www.deq.virginia.gov David K. Paylor Director Thomas Faha Regional Director December 14, 2011 Mr. John Dwelly Vice President The Nature Conservancy 4245 Fairfax Drive Arlington, VA 22203 Re: The Nature Conservancy Inspection, Permit VA0089796 Dear Mr. Dwelly: Attached is a copy of the Inspection Report generated while conducting a Facility Technical and Laboratory Inspection at The Nature Conservancy facility on November 17, 2011. This letter is not intended as a case decision under the Virginia Administrative Process Act, Va. Code § 2.2-4000 et seq. (APA). The compliance inspection staff would like to thank Mr. Justin Cooper and Mr. Danny King for their time and assistance during the inspection. A written response regarding the items in the Request for Corrective Action is due to this office by January 15, 2012. Your response may be sent either via the US Postal Service or electronically, via E-mail. If you choose to send your response electronically, we recommend sending it as an <u>Acrobat PDF or in a Word-compatible</u>, write-protected format. Additional inspections may be conducted to confirm the facility is in compliance with permit requirements. If you have any questions or comments concerning this report, please feel free to contact me at the Northern Regional Office at (703) 583-3909 or by E-mail at Rebecca. Johnson@deq.virginia.gov. Sincerely, Rebecca Johnson **Environmental Specialist II** cc: Permit/DMR File; cc electronic: Compliance Manager; Compliance Auditor - DEQ Mr. Justin Cooper, Tetra Tech Mucca J. Johnson # Virginia Department of Environmental Quality # **WASTEWATER FACILITY INSPECTION REPORT** | FACILITY NAME: The Nature Conservancy | | | INSPECTION DATE: | 11/17/11 | | | |---------------------------------------|--|-------------|--|--------------|---------|--| | | | | INSPECTOR | Rebecca John | son | | | PERMIT No.: | VA008979 |)6 | REPORT DATE: | 12/14/11 | | | | TYPE OF FACILITY: | ✓ Municipal✓ Industrial | Small Minor | TIME OF INSPECTION: | 1020 | 1130 | | | | Federal | | TOTAL TIME SPENT (including prep & travel) | 9 H | ours | | | PHOTOGRAPI | HS: ▼ Yes | □ No | UNANNOUNCED INSPECTIO | N? FY | es 🔽 No | | | REVIEWED BY | | | 0 | | | | | 12/14/11 | | | | | | | | PRESENT DUR | PRESENT DURING INSPECTION: Doug Frasier – DEQ Justin Cooper – Tetra Tech | | | | | | | | Danny King - The Nature Conservancy | | | | | | # TECHNICAL INSPECTION | 1. | Has there been any new construction? | Γ Yes | ▽ No | |-----|--|--------------|-------------| | | If so, were plans and specifications approved? | 1 168 | J♥, 1NO | | | Comments: | | | | 2. | Is the Operations and Maintenance Manual approved and up-to-date? | ▼ Yes | Γ No | | | Comments: | | | | 3. | Are the Permit and/or Operation and Maintenance Manual specified licensed operator being | ▼ Yes | Г No | | | met? | | | | | Comments: | | | | 4. | Are the Permit and/or Operation and Maintenance Manual specified operator staffing | ▼ Yes | Г No | | | requirements being met? | | | | | Comments: | | | | 5. | Is there an established and adequate program for training personnel? | ₩ Yes | □ No | | | Comments: | · | | | 6. | Are preventive maintenance task schedules being met? | ▼ Yes | □ No | | | Comments: | | | | 7. | Does the plant experience any organic or hydraulic overloading? N/A | ☐ Yes | ┌ No | | | Comments: | | - | | 8. | Has there been any bypassing or overflows since the last inspection? | T Yes | ▽ No | | | Comments: | , | | | 9. | Is the standby generator (including power transfer switch) operational and exercised | ☐ Yes | Г No | | | regularly? N/A | <u> </u> | | | | Comments: | | | | 10. | Is the plant alarm system operational and tested regularly? | ▼ Yes | Г No | | | Comments: | | - ' | | Permit # | VA0089796 | |----------|-----------| # TECHNICAL INSPECTION | 11. Is sludge disposed of in accordance with the approved sludge management plan? N/A Comments: | r Yes | □ No | | | | | |--|-------------------|---------|--|--|--|--| | 12. Is septage received? N/A | | | | | | | | If so, is septage loading controlled, and are appropriate records maintained? | ' | • • • • | | | | | | Comments: | | | | | | | | 13. Are all plant records (operational logs, equipment maintenance, industrial waste contributors, | ▼ Yes | □ No | | | | | | sampling and testing) available for review and are records adequate? | | | | | | | | Comments: | <u></u> | | | | | | | 14. Which of the following records does the plant maintain? | | ļ | | | | | | Operational logs | | | | | | | | | il itie s) | | | | | | | Comments: | | | | | | | | 15. What does the operational log contain? | | | | | | | | ✓ Visual observations ✓ Flow Measurement ✓ Laboratory results ✓ Process adjus | stments | | | | | | | Control calculations Cother (specify) | | | | | | | | Comments: | | | | | | | | 16. What do the mechanical equipment records contain? | | | | | | | | As built plans and specs Manufacturers instructions Lubrication schedules | | | | | | | | Spare parts inventory | | | | | | | | Other (specify) | | | | | | | | Comments: | | | | | | | | 17. What do the industrial waste contribution records contain (Municipal only)? N/A | | | | | | | | ☐ Waste characteristics ☐ Impact on plant ☐ Locations and discharge types | | | | | | | | Cother (specify) | | | | | | | | Comments: | | | | | | | | 18. Which of the following records are kept at the plant and available to personnel? | | | | | | | | Equipment maintenance records Operational log Industrial contributor records | | 1 | | | | | | ☐ Instrumentation records ☐ Sampling and testing records | | | | | | | | Comments: | | | | | | | | 19. List records not normally available to plant personnel and their location: | | | | | | | | Comments: Chain of Custodies, DMR's and pH calibration records | | | | | | | | 20. Are the records maintained for the required time period (three or five years)? | ▽ Yes | □ No | | | | | | Comments: | | | | | | | Permit # VA0089796 # UNIT PROCESS EVALUATION SUMMARY SHEET | UNIT PROCESS | APPLICABLE | PROBLEMS* | COMMENTS | |-------------------------------|----------------|---|---------------------------------------| | Sewage Pumping | | | | | Flow Measurement (Influent) | | <u> </u> | | | Screening/Comminution | | | 1 | | Grit Removal | | | • | | Oil/Water Separator | | | | | Flow Equalization | | | | | Ponds/Lagoons | | | | | Imhoff Tank | | | | | Primary Sedimentation | | | 1 1 11(14)(11)(11) | | Trickling Filter | ** | | | | Septic Tank and Sand Filter | | | | | Rotating Biological Contactor | | | | | Activated Sludge Aeration | - | | | | Biological Nutrient Removal | | " " " " " " " " " " " " " " " " " " " | | | Sequencing Batch Reactor | | | | | Secondary Sedimentation | + | | | | Flocculation | • | | | | Tertiary Sedimentation | + | | | | Filtration | | - | | | Micro-Screening | - | | | | | - | | No amphibance observed | | Airstripper | X | | No problems observed | | Activated Carbon Adsorption | X | | No problems observed | | Chlorination | | | | | Dechlorination | | | | | Ozonation | | | | | Ultraviolet Disinfection | | | | | Post Aeration | | | | | Flow Measurement (Effluent) | X | | No problems observed | | Land Application (Effluent) | | | · · · · · · · · · · · · · · · · · · · | | Plant Outfall | X | | No problems observed | | | | | | | | | | | | <u> </u> | | | | | Sludge
Pumping | | | | | Flotation Thickening (DAF) | | | | | Gravity Thickening | | | | | Aerobic Digestion | | | | | Anaerobic Digestion | | | | | Lime Stabilization | | | | | Centrifugation | | | | | Sludge Press | | | • | | Vacuum Filtration | | | | | Drying Beds | | | | | Thermal Treatment | | | | | Incineration | | | | | Composting | | | | | Land Application (Sludge) | | | | | | | | | | | i | | | - Problem Codes - 1. Unit Needs Attention - 2. Abnormal Influent/Effluent - 3. Evidence of Equipment Failure - 4. Unapproved Modification or Temporary Repair - 5. Evidence of Process Upset - 6. Other (explain in comments) Permit # VA0089796 # INSPECTION OVERVIEW AND CONDITION OF TREATMENT UNITS - Mr. Doug Frasier and I arrived onsite at 10:20 a.m. We met with Mr. Danny King, Chief Building Engineer. - Mr. King escorted us to the parking garage where the treatment unit is located. - The building is located on a former remediation site (gas station and auto repair shop) - Groundwater drains to the lowest subgrade floor and is collected in the recovery sump. - Samples are collected at the influent and effluent sample collection point of the airstripper. Photos 1 – 3 - Water is then pumped through an airstripper to transfer the VOCs from water to air. Mr. Cooper informed DEQ staff that the airstripper is cleaned annually using simple green and a power washing unit. Photo 3 - The air passes through the carbon filtration unit before it is discharged to the atmosphere. Mr. King said the filters are changed monthly. The filter was changed November 15, 2011. **Photos 3 & 4** - The flow is recorded via a totalizer. - No problems were observed with any of the units. - Mr. Frasier and I departed at 11:30 a.m. | Permit # | VA0089796 | |----------|-----------| # EFFLUENT FIELD DATA: N/A | Flow | MGD | Dissolved Oxygen | mg/L | TRC (Contact Tank) | mg/L | |---------|-----------------------|------------------|---------------------|----------------------|------| | рН | S.U. | Temperature | °C | TRC (Final Effluent) | mg/L | | Was a S | ampling Inspection co | nducted? | see Sampling Inspec | ction Report) 🔽 No | | ## CONDITION OF OUTFALL AND EFFLUENT CHARACTERISTICS: | | CONDITION OF OUTFALL A | OB BITEOBITE CILL | uiciliusiico. | |----------|---|--------------------------|---------------------------| | 1. | Type of outfall: Shore based Submerged | Diffuser? | Г No | | 2. | Are the outfall and supporting structures in good cond | dition? | Г No | | 3. | Final Effluent (evidence of following problems): | □ Sludge bar | ☐ Grease | | ٠ | Turbid effluent Visible foam | □ Unusual color | ☐ Oil sheen | | 4. | Is there a visible effluent plume in the receiving stream | m? | Г № | | 5. | Receiving stream: | ☐ Indication of problem | ns (explain below) | | | <u>Comments:</u> The facility has influent and effluent problems were observed. | sample collection points | at the treatment unit. No | | <u> </u> | | | | # **REQUEST for CORRECTIVE ACTION:** - 1. Submit documentation of the initial demonstration of capabilities (IDC) for the next monitoring event to DEQ-NRO. See the attached document for instructions on how to complete the IDC. - 2. Submit documentation from Field Environmental of the annual certification of the pH meter against an NIST thermometer for the next monitoring event to DEQ-NRO. # **NOTES and COMMENTS:** The facility appeared to be well maintained. Both Mr. King and Mr. Cooper should be commended on their efforts at maintaining a well cleaned treatment unit. # LABORATORY INSPECTION REPORT SUMMARY | FACILITY NAME: | FACILITY NO: | INSPECTION DATE: | |---|--|----------------------| | The Nature Conservancy | VA0089796 | November 17, 2011 | | (X) Deficiencies | () No Deficiencies | | | LABO | RATORY RECORDS | | | The Laboratory Records section had No Deficiencies n | noted during the inspection. | | | GENERAL SA | AMPLING AND ANALYSIS | 2.17 | | The General Sampling and Analysis section had No De | ficiencies noted during the inspection | n. | | LABOR | RATORY EQUIPMENT | 15-15
11-15-15 | | The Laboratory Equipment section had No Deficiencies | s noted during the inspection. | | | INDIVIE | DUAL PARAMETERS | 11
11
12
14 | | | рН | | | The analysis for the parameter pH had Deficiencies not | ted during the inspection. | | - The initial demonstration has not been performed for the operations staff. - There was no documentation of the annual NIST certification for the pH meter rented by the facility. # DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER DIVISION LABORATORY INSPECTION REPORT 10/01 | | LITY NO:
1089796 | INSPECTION DATE:
November 17, 2011 | LAST INSPECTION:
November 1, 2006 | | PREVIOUS EVA
No Deficie | | N: | TIME SPENT:
1 hours | |--------------------------|-----------------------|---------------------------------------|--------------------------------------|---------|------------------------------------|--------|-------------------|------------------------------------| | NAME
The Na
4245 F | | OF FACILITY:
servancy
ve | FACILITY CLASS: () MAJOR () MINOR | FA
(| CILITY TYPE:) MUNICIPAL | | INS
()
(X) | ANNOUNCED
PECTION?
YES
NO | | | | | (X) SMALL () VPA/NDC | (| • | LAB | INS
(X) | SCHEDULED PECTION?) YES NO | | Rebec | CTOR(S):
ca Johnso | on . | REVIEWERS: |)
 | PRESENT AT INS
Mr. King and Mr. | | | | | ·.' | | LABORATO | RY EVALUATION | | | | DEFIC | CIENCIES? | | | | | | | | Υ | es | No | | LABO | RATORY R | ECORDS | | | | | | x | | GENE | RAL SAMP | LING & ANALYSIS | | | | | | х | | LABO | RATORY E | QUIPMENT | | | | | | X | | QUAL | TIY ASSUR | ANCE/QUALITY CONTRO | OL | | | | | х | | pH AN | IALYSIS PR | ROCEDURES | | | | 7 | K | | | | | | | | | | | | | | | QUA | LITY ASSURANCE/QUAL | | CONTROL | | 1.2 | 1 | | Y/N | QUALITY | ASSURANCE METHOD | PARAMETERS | | | FRE | QUEN | ICY | | | REPLICA | ATE SAMPLES | | | | 1 | * | | | | SPIKED | SAMPLES | | | | | | | | | STANDA | RD SAMPLES | pH | | | Daily | y as ı | needed | | | SPLIT SA | AMPLES | | | | | | | | | SAMPLE | BLANKS | | | | | | | | | OTHER | | | | | | | | | | EPA-DMI | R QA DATA? | RATING: (X) | No [| Deficiency () Defi | ciency | ()N | IA | | | QC SAM | PLES PROVIDED? | | | eficiency () Defi | | | | | | | | | | | FACILITY | #. VA00 | 89796 | |--------------------------------|---|--|---
--|-------------------------------------|-----------|---------|-------| | | | LABO | RATORY RECORDS SECTION | N | | | | | | LABO | RATORY RECORDS INCLUDE THE | FOLLO | OWING: | | | | | | | Х | SAMPLING DATE | х | ANALYSIS DATE | | CONT MO | ONITORING | G CHAR | Т | | х | SAMPLING TIME | х | ANALYSIS TIME | Х | INSTRUM | IENT CALI | BRATIO | N | | х | SAMPLE LOCATION | х | TEST METHOD | х | INSTRUM | IENT MAIN | ITENAN | CE | | | J | | J | х | CERTIFIC | CATE OF A | NALYSI | s | | WRIT | TEN INSTRUCTIONS INCLUDE THE | FOLLO | WING: | <u> </u> | <u> </u> | | | | | х | SAMPLING SCHEDULES | | CALCULATIONS | х | ANALYSI | S PROCE | DURES | | | | | Marie Trans | | | | YES | NO | N/A | | DO A | L ANALYSTS INITIAL THEIR WOR | K? | | | | Х | | | | DO B | ENCH SHEETS INCLUDE ALL INFO | DRMATI | ON NECESSARY TO DETERM | INE RE | SULTS? | х | | | | | E DMR COMPLETE AND CORRECTION Of CORRECTION OF COMPLETE AND CORRECT COMPLETE AND COMPLETE AND COMPLETE AND CORRECT OF COMPLETE AND | T? MON | TH(S) REVIEWED: Jan – Jun | ne 2010, | June – | х | | | | ARE / | ALL MONITORING VALUES REQUI | RED BY | THE PERMIT REPORTED? | | | х | | | | | GEN | ERAL S | SAMPLING AND ANALYSIS S | SECTION | 1 | | | | | | | | 44 | in the second se | 1 page 11 | YES | NO | N/A | | ARE | SAMPLE LOCATION(S) ACCORDIN | G TO P | ERMIT REQUIREMENTS? | | | х | | | | ARE | SAMPLE COLLECTION PROCEDU | RES AP | PROPRIATE? | | | Х | | | | IS SA | MPLE EQUIPMENT CONDITION A | DEQUAT | ΓΕ? | | | Х | | | | IS FL | OW MEASUREMENT ACCORDING | TO PER | RMIT REQUIREMENTS? | | | Х | | | | ARE | COMPOSITE SAMPLES REPRESE | NTATIV | E OF FLOW? | | | | | Х | | ARE: | SAMPLE HOLDING TIMES AND PR | RESERV | 'ATION ADEQUATE? | | | х | | | | ADEC
(TCE, Chlore
Dichle | ALYSIS IS PERFORMED AT ANOT
QUATE? LIST PARAMETERS AND
Ethylbenzene, Vinyl Chloride, Benzen
oform, Carbon Tetrachloride, VOCs, X
proethane, Trans-1,2-dichloroethylene
I Laboratories Inc. (VELAP ID: 46 | NAME a
ne, 1,1,1 1
(ylene, 1,
e, Cis -1,2 | & ADDRESS OF LAB:
frichloroethane, Tetrachloroeth
,1 Dichloroethlyene, Dichlorobe | lyene, To
nzene, 1, | luene,
2, | x | | | | 1025 | Cromwell Bridge Road
nore, MD 21286 | | | | | | | | | | | LABO | RATORY EQUIPMENT SECTI | ON | | | | | | | | With the second | | | | YES | NO | N/A | | IS LA | BORATORY EQUIPMENT IN PROP | ER OPE | ERATING RANGE? | | and the second second second second | х | | | | ARE | ANNUAL THERMOMETER CALIBRA | ATION(S | 6) ADEQUATE? | | | х | | | | IS TH | E LABORATORY GRADE WATER | SUPPLY | ' ADEQUATE? | | | | | х | | ARE / | ANALYTICAL BALANCE(S) ADEQU | JATE? | | | | | | Х | | ANALYST: | Justin Cooper | VPDES NO | VA0089796 | |----------|---------------|----------|---| | | odomi obopo. | | *************************************** | Parameter: Hydrogen Ion (pH) Method: Electrometric 01/08 Meter: Field Environmental Rental Equipment #### METHOD OF ANALYSIS 18th Edition of Standard Methods-4500-H-B X 21st or On-Line Edition of Standard Methods-4500-H-B (00) pH is a method defined analyte so modifications are not allowed. [40 CFR Part 136.6] Υ Ν Is a certificate of operator competence or initial demonstration of capability available for each 1) analyst/operator performing the analysis? NOTE: Analyze 4 samples of known pH. May use X external source of buffer (different lot/manufacturer than buffers used to calibrate meter). Recovery for each of the 4 samples must be \pm 0.1 SU of the known concentration of the sample. [SM 1020 B.1] 2) Is the electrode in good condition (no chloride precipitate, etc.)? *See [2.b/c and 5.b] Comments 3) Is electrode storage solution in accordance with manufacturer's instructions? [Mfr.] Is meter calibrated on at least a daily basis using three buffers all of which are at the same X temperature? [4.a] NOTE: Follow manufacturer's instructions. 5) After calibration, is a buffer analyzed as a check sample to verify that calibration is correct? X Agreement should by within ± 0.1 SU. [4.a] 6) Do the buffer solutions appear to be free of contamination or growths? [3.1] 7) Are buffer solutions within their listed shelf life or have they been prepared within the last 4 weeks? *See 8) Is the cap or sleeve covering the access hole on the reference electrode removed when measuring Comments 9) For meters with ATC that also have temperature display, was the thermometer calibrated annually? [SM2550 B.1] 10) Is the temperature of buffer solutions and samples recorded when determining pH? Χ 11) Is sample analyzed within 15 minutes of collection? [40 CFR 136.6] 12) Was the electrode rinsed and then blotted dry between reading solutions (Disregard if a portion of the *See next sample analyzed is used as the rinse solution)? [4.a] Comments 13) Is the sample stirred gently at a constant speed during measurement? [4.b] 14) Does the meter hold a steady reading after reaching equilibrium? [4.b] 15) Is a duplicate sample analyzed after every 20 samples if citing 18th or 19th Edition [1020 B.6] or daily NA for 20th or 21th Edition [Part 1020] Note: Not required for in situ samples. 16) Is pH of duplicate samples within 0.1 SU of the original sample? [Part 1020] NA 17) Is there a written procedure for which result will be reported on DMR (Sample or Duplicate) and is this NA procedure followed? [DEQ] # COMMENTS: 9) Ensure the thermometer is certified against an NIST thermometer annually. On December 13, 2011, I spoke with the technician at Field Environmental and he informed me that a request must be made by the customer in order to ensure the pH meter that is rented to the customer is certified against an NIST thermometer. See Request for Corrective Action for more details. *Mr. Cooper rents a pH meters from Field Environmental to analyze the effluent pH at the facility. A thorough inspection of the pH meter was not conducted. According to the technician that I spoke to on December 13, 2011, Field Environmental services and calibrates the pH meter according to the manufacturer's specification. To: Douglas Frasier From: Jennifer Carlson Date: July 27, 2012 Subject: **Planning Statement for The Nature Conservancy** Permit Number: VA0089796 # Information for Outfall 001: Discharge Type: Industrial – groundwater treatment system (carbon/air stripper) Discharge Flow: 0.0144 MGD Receiving Stream: UT to Lubber Run Latitude / Longitude: 38 52 57/-77 06 45 Rivermile: 0.27 Streamcode: 1aXHX Waterbody: VAN-A12R Water Quality Standards: Class III, Section 7, sp stds. b 1. Please provide water quality monitoring information for the receiving stream segment. If there is not monitoring information for the receiving stream segment, please provide information on the nearest downstream monitoring station, including how far downstream the monitoring station is from the outfall. This facility discharges to an unnamed tributary to Lubber Run (storm sewer). There is not any water quality monitoring data for the receiving stream. The nearest downstream DEQ monitoring station is 1aFOU004.22, located on Fourmile Run at the Route 244 bridge crossing, approximately 2.4 miles downstream of Outfall 001. The following is the water quality summary for this segment of Fourmile Run, as taken from the Draft 2012 Integrated Report*: Class III, Section 7, special stds. b. DEQ ambient monitoring stations 1aFOU001.92, at West Glebe Road, 1aFOU002.02, upstream of South Glebe Road, 1aFOU004.22, at Route 244, and 1aFOU005.60, at Carlyn Springs Road. Citizen monitoring stations 1aFOU-1-ACM, 1aFOU-2-ACM, 1aFOU-3-ACM, 1aFOU-4-ACM, 1aFOU-5-ACM, 1aFOU-6-ACM, 1aFOU-7-ACM, 1aFOU-8-ACM, 1aFOU-9-ACM, and 1aFOU-11-ACM. E. coli monitoring finds a bacterial impairment, resulting in an impaired classification for the recreation use. The E. coli data collected by the citizen monitoring group indicate that a water quality issue may exist for the recreation use. A
bacteria TMDL for the Fourmile Run watershed has been completed and approved. The aquatic life and wildlife uses are considered fully supporting, with the aquatic life use noted with observed effects, described above. The fish consumption use is fully supporting with observed effects. SPMD data revealed an exceedance of the human health criteria of 0.64 parts per billion (ppb) for polychlorinated biphenyls (PCBs), which is noted with an observed effect. A PCB TMDL for the tidal Potomac River watershed has been completed and approved. - * The Draft 2012 Integrated Report (IR) has been through the public comment period and reviewed by EPA. The 2012 IR is currently being finalized and prepared for release. - 2. Does this facility discharge to a stream segment on the 303(d) list? If yes, please fill out Table A. No. 3. Are there any downstream 303(d) listed impairments that are relevant to this discharge? If yes, please fill out Table B. Yes. Table B. Information on Downstream 303(d) Impairments and TMDLs | Waterbody
Name | Impaired Use | Cause | Distance
From
Outfall | TMDL
completed | WLA | Basis for
WLA | TMDL
Schedule | |-------------------|-------------------|--------------------|-----------------------------|--|------|------------------|------------------| | Impairment l | Information in tl | ne Draft 2012 Inte | grated Rep | ort* | | | | | Fourmile
Run | Recreation | E. coli | 1.5
miles | Four Mile
Run Bacteria
5/31/2002 | None | | N/A | | Fourmile | Fish | РСВ | 5.1
miles | Tidal
Potomac PCB
10/31/2007 | None | | N/A | | Run (Tidal) | Consumption | Chlordane | 5.1
miles | N/A | | | 2022 | ^{*}The Draft 2012 Integrated Report (IR) has been through the public comment period and reviewed by EPA. The 2012 IR is currently being finalized and prepared for release. 4. Is there monitoring or other conditions that Planning/Assessment needs in the permit? In support of the Potomac River PCB TMDL that was developed in 2007, this facility is a candidate for low-level PCB monitoring, based on its Standard Industrial Classification (SIC) code. Low-level PCB analysis uses EPA Method 1668B, which is capable of detecting low-level concentrations for all 209 PCB congeners. The Assessment/TMDL Staff has concluded that low-level PCB monitoring is not warranted for this facility, as it is not expected to be a source of PCBs. Based on this information, this facility will not be requested to monitor for low-level PCBs. There is a completed downstream TMDL for the aquatic life use impairment for the Chesapeake Bay. However, the Bay TMDL and the WLAs contained within the TMDL are not addressed in this planning statement. 5. Fact Sheet Requirements – Please provide information regarding any drinking water intakes located within a 5 mile radius of the discharge point. There are no public water supply intakes within a 5 mile radius of this facility's outfall. # FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS Facility Name: The Nature Conservancy Lubber Run, UT Receiving Stream: Permit No.: VA0089796 Version: OWP Guidance Memo 00-2011 (8/24/00) | Stream Information | | Stream Flows | | Mixing Information | | Effluent Information | | |----------------------------------|-------|---------------------|-------|-------------------------|-----|----------------------------|------------| | Mean Hardness (as CaCO3) = | mg/L | 1Q10 (Annual) = | 0 MGD | Annual - 1Q10 Mix = | % 0 | Mean Hardness (as CaCO3) = | 20 mg/L | | 90% Temperature (Annual) = | O deb | 7Q10 (Annual) = | O MGD | - 7Q10 Mix = | % O | 90% Temp (Annual) = | 25 deg C | | 90% Temperature (Wet season) = | O deg | 30Q10 (Annual) = | 0 MGD | - 30Q10 Mix = | % 0 | 90% Temp (Wet season) = | 15 deg C | | 90% Maximum pH = | S | 1Q10 (Wet season) = | O MGD | Wet Season - 1Q10 Mix = | % 0 | 90% Maximum pH = | 8.1 SU | | 10% Maximum pH ≃ | ns | 30Q10 (Wet season) | O MGD | - 30Q10 Mix = | % 0 | 10% Maximum pH = | 7.4 SU | | Tier Designation (1 or 2) = | - | 3005 = | O MGD | | | Discharge Flow = | 0.0144 MGD | | Public Water Supply (PWS) Y/N? = | c | Harmonic Mean = | 0 MGD | | | | | | Trout Present Y/N? = | c | | | | | | | | Early Life Stages Present Y/N? = | >- | | | | | | | | Parameter | Background | | Water Quality Criteria | y Criteria | | Was | Wasteload Aflocations | cations | | A | Antidegradation Baseline | n Baseline | | An | Antidegradation Altocations | Altocations | | _ | Most Limitin | Most Limiting Allocations | | |-------------------------------------|------------|----------|------------------------|-------------|---------|-------------------|-----------------------|---------|---------|-------|--------------------------|------------|------|-------|-----------------------------|-------------|---|----------|---------------------|---------------------------|---------| | (ng/l unless noted) | Conc. | Acute | Chronic HH (PWS) | H (PWS) | 표 | Acute Chr | Chronic HH (PWS) | (PWS) | Ŧ | Acute | Chronic Hi | HH (PWS) | HH | Acute | Chronic | HH (PWS) | ¥ | Acute | Chronic | HH (PWS) | . ≢ | | Acenapthene | 0 | - | : | eu | 9.9E+02 | 1 | , | na 9. | 9.9E+02 | | 1 | ; | | | ; | ı | ı | 1 | ı | 2 | 9.9E+02 | | Acrolein | 0 | ; | t | e | 9.3E+00 | 1 | , | na 9. | 9.3E+00 | : | , | ı | t | ; | 1 | t | ; | | ı | ē | 9.3E+00 | | Acrylonitrile ^c | 0 | 1 | ı | e. | 2.5E+00 | 1 | , | na 2. | 2.5E+00 | 1 | 1 | : | ı | ; | 1 | ì | ı | 1 | : | n
e | 2.5E+00 | | Aldrin ^c | 0 | 3.0E+00 | ŧ | na
eu | 5.0E-04 | 3.0E+00 | , | na 5 | 5.0E-04 | ı | 1 | ŀ | 1 | 1 | 1 | 1 | : | 3.0E+00 | : | 2 | 5.0E-04 | | Ammonia-N (mg/l)
(Yearly) | 0 | 6.95E+00 | 1.07E+00 | ē | ! | 6.95E+00 1.07E+00 | | P. | ı | ; | 1 | ı | 1 | : | ; | ı | 1 | 6.95E+00 | 1.07E+00 | па | 1 | | Ammonia-N (mg/l)
(High Flow) | 0 | 6.95E+00 | 2.03E+00 | ē | ı | 6.95E+00 2.03E+00 | | na | 1 | ı | ı | ı | 1 | ı | ŧ | 1 | | 6.95E+00 | 2.03E+00 | вп | ı | | Anthracene | 0 | ţ | ı | E EL | 4.0E+04 | ; | 1 | na 4. | 4.0E+04 | ; | ı | ı | 1 | ż | ŀ | ı | į | : | : | e E | 4.0E+04 | | Antimony | 0 | : | : | e u | 6.4E+02 | , | | na 6. | 6.4E+02 | ì | ı | ; | ! | ı | ı | .1 | ı | : | ; | 8 | 6.4E+02 | | Arsenic | 0 | 3.4€+02 | 1.5E+02 | ВП | 1 | 3,4E+02 1.56 | 1.5E+02 | БП | 1 | 1 | ; | ţ | ı | 1 | ı | | ı | 3.4E+02 | 1.5E+02 | ē | ı | | Barium | 0 | 1 | ı | eu
eu | 1 | | 1 | 5 | 1 | ı | ı | ı | 1 | • | ł | ı | 1 | : | : | ē | : | | Benzene ^c | 0 | ı | ı | B | 5.1E+02 | ı | , | na 5. | 5.1E+02 | : | ı | ı | 1 | ı | ı | ı | 1 | ı | ; | 8 | 5.1E+02 | | Benzidine ^c | 0 | ı | ı | na
e | 2.0E-03 | | : | na 2 | 2.0E-03 | ; | ; | ; | 1 | 1 | ı | ı | ı | ı | ; | ē | 2.0E-03 | | Benzo (a) anthracene ^c | 0 | t | 1 | BC | 1.8E-01 | t | t | na 1 | 1.8E-01 | ; | ; | ; | ı | 1 | 1 | , | ı | 1 | ı | ъ | 1.8E-01 | | 3enzo (b) fluoranthene ^c | 0 | t | ì | Ba | 1.8E-01 | ı | 1 | na 1 | 1.8E-01 | ı | ı | ; | 1 | 1 | 1 | 1 | 1 | : | ı | 2 | 1.8E-01 | | 3enzo (k) fluoranthene ^c | 0 | ı | ţ | 5 | 1.8E-01 | ı | t | Ta 1 | 1.8E-01 | ŀ | 1 | ; | 1 | 1 | 1 | 1 | 1 | : | : | ē | 1.8E-01 | | Зепzo (a) pyrene ^с | 0 | ı | ı | æ | 1.8E-01 | ı | ı | na 1 | 1.8E-01 | ŧ | ı | : | 1 | ı | ; | ı | 1 | ; | ı | 2 | 1.8E-01 | | 3is2-Chloroethyl Ether ^C | 0 | | ı | eu | 5.3E+00 | ı | | na 5. | 5.3€+00 | ı | ı | ì | ı | ŧ | 1 | ; | ı | ; | : | en | 5.3€+00 | | 3is2-Chloroisopropyt Ether | 0 | ! | ı | 8 | 6.5E+04 | 1 | 1 | na 6. | 6.5E+04 | ; | ı | : | 1 | ı | ŀ | ì | ŀ | ; | , | E | 6.5E+04 | | t 3is 2-Ethylhexyl Phthalate c | 0 | 1 | ı | 6 | 2.2E+01 | 1 | 1 | na 2. | 2.2E+01 | 1 | 1 | 1 | 1 | ı | ł | ı | ı | : | 1 | na | 2.2E+01 | | aromotorm c | 0 | t | ţ | e tu | 1.4E+03 | | , | na 1. | 1.4E+03 | í | 1 | • | ı | 1 | ŀ | ı | 1 | : | 1 | 2 | 1.4E+03 | | 3utylbenzylphthalate | 0 | : | ı | 13 | 1.9E+03 | ; | ı | na 1. | 1.9E+03 | ; | | ì | ···· | ı | ı | ; | ı | ; | : | 2 | 1.9E+03 | | | 0 | 1.8E+00 | 6.6E-01 | e c | 1 | 1.8E+00 6.6I | 6.6E-01 | na | | ı | ı | 1 | 1 | ı | ı | ı | } | 1.8E+00 | 6.6E-01 | D. | ; | | 3 Sarbon Tetrachloride c | 0 | : | : | na
er | 1.6E+01 | ; | ì | na 1. | 1.6E+01 | : | | 1 | 1 | 1 | 1 | ı | ı | : | ı | ē | 1.6E+01 | | Thordane c | 0 | 2.4E+00 | 4.3E-03 | en. | 8.1E-03 | 2.4E+00 4.3l | 4 3E-03 | na 8 | 8.1E-03 | | 1 | 1 | 1 | 1 | 1 | ı | ı | 2.4E+00 | 4.3E-03 | ec | 8.1E-03 | | 2 Shloride | 0 | 8.6E+05 | 2.3E+05 | S. | 1 | 8.6E+05 2.36 | 2.3E+05 | ē | , | 1 | 1 | 1 | ı | t | ; | ı | 1 | 8.6E+05 | 2.3E+05 | æ | : | | IRC | 0 | 1.9E+01 | 1.1E+01 | en
e | 1 | 1.9E+01 1.16 | 1,1E+01 | na | , | ; | : | ı | ; | ı | ı | ş | 1 | 1.9E+01 | 1.1E+01 | na | ı | | Chlorobenzene | 0 | : | 1 | na
en | 1.6E+03 | | | na 1. | 1.6E+03 | 1 | 1 | 1 | ţ | ; | 1 | ı | : | : | ı | Dā | 1.6E+03 | 10/23/2012 - 2:08 PM | Parameter | Background | | Water Quality Criteria | ality Criter | 12 | L | Wastelo | Wasteload Allocations | IIS | | Anlidegrada | Anlidegradation Baseline | | ₩
 | Antidegradation Allocations | Allocations | | | Most Limiting Allocations | Allocations | | |---|------------|---------|------------------------|------------------|---------|-----------|------------|-----------------------|---------|-------|-------------|--------------------------|---|-------|-----------------------------|-------------|-----|---------|---------------------------|-------------|---------| | (ug/l unless noted) | Conc. | Acute | Chronic | Chronic HH (PWS) | S) HH | Acute | Г | Chronic HH (PWS) | E (S | Acute | Chronic | HH (PWS) | 于 | Acute | Chronic | HH (PWS) | Ŧ | Acute | Chronic | HH (PWS) | Ŧ | | Chlorodibromomethane ^c | 0 | | | Ē | 1.3E+02 | 2 | | e.n | 1.3E+02 | 1 | ı | ı | 1 | - | 1 | ţ | 1 | : | : | na | 1.3E+02 | | Chloroform | 0 | í | 1 | g | 1.15+04 | | ; | ā | 1.1E+04 | 1 | ı | ŧ | , | ı | ŀ | ŧ | ı | : | 4 | 13 | 1.1E+04 | | 2-Chloronaphthalene | 0 | ı | ı | 핕 | 1.6E+03 | ۱
۳ | ı | na | 1.6E+03 | i | 1 | ţ | 1 | ı | ı | ı | ı | ; | , | e | 1.6E+03 | |
2-Chioraphenot | 0 | 1 | ı | 2 | 1.5E+02 | - 1 | ı | E C | 1.5E+02 | ı | ı | ; | t | 1 | ı | ı | ı | 1 | | en
e | 1.5E+02 | | Chlorpyrifos | 0 | 8.3E-02 | 4.1E-02 | Bu | 1 | 8.3E-02 | 32 4.1E-02 | na | ı | ı | 1 | ; | ı | 1 | ı | 1 | ı | 8.3E-02 | 4.1E-02 | na | : | | Chromium III | 0 | 3.2E+02 | 4.2E+01 | Pa | ı | 3.2E+02 | 02 4.2E+01 | Б П | ı | 1 | ı | ; | , | ı | 1 | 1 | ı | 3.2E+02 | 4.2E+01 | na | : | | Chromium VI | 0 | 1.6E+01 | 1.1E+01 | e
G | ; | 1.6E+01 | 01 1.1E+01 | en na | • | ı | ŀ | ı | t | ı | ŀ | ı | t | 1.6E+01 | 1.1E+01 | na | t | | Chromium, Total | 0 | t | ı | 1.0E+02 | 2 | ' | ı | ā | 1 | 1 | ı | 1 | ı | ı | t | ı | · | t | : | ē | : | | Chrysene ^c | 0 | 1 | 1 | 6 | 1.8E-02 | 1 | ı | na | 1.8E-02 | ı | ı | 1 | ı | , | ; | ı | ı | 1 | | ē | 1.8E-02 | | Copper | o | 7.0E+00 | 5.0E+00 | na | ! | 7.0E+00 | 00 5.0E+00 | o na | ; | ı | 1 | 1 | ı | ı | 1 | ı | 1 | 7.0E+00 | 5.0E+00 | eu | ı | | Cyanide, Free | ٥ | 2.2E+01 | 5.2E+00 | na | 1.6E+04 | 4 2.2E+01 | 01 5.2E+00 |) na | 1.6E+04 | ı | ì | 1 | ; | 1 | ı | ı | ì | 2.2E+01 | 5.2E+00 | па | 1.6E+04 | | ې م مم | o | t | ı | Ē | 3.1E-03 | ا
 | ı | ē | 3.1E-03 | ı | ı | ; | ı | 1 | r | 1 | 1 | ì | : | na | 3.1E-03 | | 00€ € | 0 | ı | ı | ē | 2.2E-03 | - | 1 | ā | 2.2E-03 | 1 | 1 | 1 | 1 | 1 | ı | ı | ı | ; | , | ē | 2.2E-03 | | DDT ° | 0 | 1.1E+00 | 1.0E-03 | <u>B</u> | 2.2E-03 | 3 1.1E+00 | 00 1.0E-03 | na
v | 2.2E-03 | ı | i | ı | , | ı | ı | ı | ; | 1.1E+00 | 1.0E-03 | па | 2.2E-03 | | Demeton | • | ŧ | 1.0E-01 | 53 | ; | • | 1.0E-01 | eu
I | ; | ı | ı | ì | ı | ŧ | 1 | ı | ı | : | 1.0E-01 | eu | 1 | | Diazinon | Ģ | 1.7E-01 | 1.7E-01 | na | ł | 1.7E-01 | 1.7E-01 | па | ı | ; | ŧ | ; | ı | ı | 1 | 1 | 1 | 1.7E-01 | 1.7E-01 | na | 1 | | Dibenz(a,h)anthracene ^c | ٥ | ï | ŀ | Ē | 1.8E-01 | | ţ | na | 1.8E-01 | ı | ţ | t | 1 | ı | ì | ı | t | : | : | na
Bu | 1.8E-01 | | 1,2-Dichtorobenzene | • | 1 | ; | БГ | 1.3E+03 | -
- | ı | a | 1.3E+03 | ı | ŀ | ı | ı | 1 | ł | ı | | : | | ng | 1.3E+03 | | 1,3-Dichlorobenzene | 0 | ! | ; | na | 9.6E+02 | - 2 | 1 | na | 9.6E+02 | 1 | 1 | ı | ı | ı | ı | ı | ı | 1 | 1 | ec. | 9.6E+02 | | 1,4-Dichlorobenzene | 0 | 1 | 1 | Б | 1.9E+02 | | 1 | a | 1.9E+02 | ı | ı | ı | ı | 1 | ı | ı | 1 | : | : | ē | 1.9E+02 | | 3,3-Dichlorobenzidine ^c | 0 | | ı | E C | 2.8€-01 | | 1 | ē | 2.8E-01 | ı | ı | t | t | ı | ı | ı | . 1 | : | | eu. | 2.8E-01 | | Dichlorobromomethane ^c | 0 | ı | ł | 6 | 1.7E+02 | | 1 | æ | 1.7E+02 | ŀ | ı | ı | ı | ı | ŀ | ı | ì | ı | | 2 | 1.7E+02 | | 1,2-Dichloroethane ^c | 0 | · | 1 | a | 3.7E+02 | | 1 | ū | 3.7E+02 | ı | ı | ı | ŧ | 1 | ı | ı | ı | : | ſ | na | 3.7E+02 | | 1,1-Dichloroethylene | 0 | : | i | E | 7.1E+03 | ا
و | 1 | E | 7.1E+03 | } | ı | ı | 1 | ı | ŀ | t | ŧ | 1 | | en
B | 7.1E+03 | | 1,2-trans-dichloroethylene | 0 | 1 | ; | E | 1.0E+04 | | ı | Па | 1.0E+04 | t | ; | 1 | ; | 1 | ı | ; | ı | ; | | na | 1.0E+04 | | 2,4-Dichlorophenol | 0 | ı | ı | ē | 2.9E+02 | - 2 | · | Ē | 2.9E+02 | t | ı | ı | ı | ţ | 1 | 1 | ŀ | : | : | na | 2.9E+02 | | 2,4-Dichlorophenoxy acetic acid (2.4-D) | 0 | ı | ; | ם | , | - | ! | E | ı | 1 | 1 | , | | ; | ; | ı | ı | ; | ı | na | ; | | 1,2-Dichloropropane ^c | 0 | ı | ı | 2 | 1.5E+02 | | 1 | ē | 1.5E+02 | ı | 1 | ı | ı | ı | ı | t | 1 | ; | ; | ē | 1.5E+02 | | 1,3-Dichloropropene ^C | 0 | 1 | ì | 28 | 2.1E+02 | - 2 | ı | ē | 2.1E+02 | 1 | 1 | ; | 1 | ı | ı | ı | ı | 1 | , | na | 2.1E+02 | | Dieldrin ^c | 0 | 2.4E-01 | 5.6E-02 | 22 | 5.4E-04 | 2.4E-01 |)1 5.6E-02 | na | 5.4E-04 | 1 | ł | 1 | , | ı | 1 | 1 | ŧ | 2.4E-01 | 5.6E-02 | Bu | 5.4E-04 | | Diethyl Phthalate | 0 | t | ı | e. | 4,4E+04 |
 | ı | g | 4.4E+04 | ı | 1 | ı | ı | ı | ì | ı | ı | ; | : | ē | 4.4E+04 | | 2,4-Dimethylphenol | 0 | ı | ; | na | 8.5E+02 | 1 | : | E | 8.5E+02 | 1 | 1 | 1 | 1 | ı | 1 | ı | ı | 1 | , | ē | 8.5E+02 | | Dimethyl Phthalate | 0 | 1 | 1 | a | 1.1E+06 | " | 1 | na | 1.15+06 | ١ | ı | ı | ı | ı | 1 | 1 | 1 | : | , | na
Bu | 1.1E+06 | | Di-n-Butyl Phthalate | 0 | | ı | na | 4.5E+03 | 1
 | 1 | na | 4.5E+03 | ı | 1 | 1 | ı | 1 | ŀ | ı | ı | : | : | na
eu | 4.5E+03 | | 2,4 Dinitrophenal | 0 | | ł | a | 5.3E+03 | : | 1 | E | 5.3E+03 | ı | ł | t | ı | 1 | i | ı | ı | | 1 | EU. | 5.3E+03 | | 2-Methyl-4,5-Dinitrophenol | 0 | 1 | ı | eu | 2.8E+02 | - | ı | ē | 2.8E+02 | ; | ı | ı | ı | 1 | 1 | ı | ı | 1 | | 2 | 2.8E+02 | | 2,4-Dinitrotoluene ^c | 0 | ٠ | í | ē | 3.4E+01 | ·
- | 1 | e. | 3.4E+01 | i | . 1 | 1 | ı | ı | 1 | 1 | : | 1 | ı | ā | 3.4E+01 | | tetrachtorodibenzo-p-dioxin | 0 | | ı | 2 | 5.15-08 | -
 | 1 | ē | 5.1E-08 | ı | 1 | 1 | ; | ŧ | 1 | 1 | ł | ı | : | ē | 5.1E-08 | | 1.2-Diphenylhydrazine ^c | 0 | | ı | ē | 2.0E+00 | | t | <u>6</u> | 2.0E+00 | ; | ı | t | ı | ı | 1 | î | 1 | : | , | Ē | 2.0E+00 | | Alpha-Endosuífan | 0 | 2.2E-01 | 5.6E-02 | ē | 8.9E+01 | 1 2.2E-01 | 31 5.6E-02 | eg. | 8.9E+01 | 1 | ; | 1 | ı | ı | ı | ; | ı | 2.2E-01 | 5.6E-02 | n | 8.9E+01 | | Beta-Endosulfan | 0 | 2.2E-01 | 5.6E-02 | ē | 8.9E+01 | 2.2E-01 | 31 5.6E-02 | e. | 8.9E+01 | : | : | ı | 1 | ı | ! | ı | ı | 2.2E-01 | 5.6E-02 | ec. | 8.9E+01 | | Alpha + Beta Endosulfan | 0 | 2.2E-01 | 5.6E-02 | 1 | 1 | 2.2E-01 | 31 5.6E-02 | 1 | 1 | 1 | t | t | 1 | ı | 1 | 1 | 1 | 2.2E-01 | 5.6E-02 | ı | : | | Endosulfan Sulfate | 0 | • | t | ē | 8.9E+01 | _ | 1 | 2 | 8.9E+01 | ı | 1 | ŧ | , | ı | ı | 1 | 1 | 1 | ı | na | 8,9E+01 | | Endrin | o | 8.6E-02 | 3.6E-02 | 2 | 6.0E-02 | 8.6E-02 | 3.6E-02 | B E | 6.0E-02 | ł | ı | ı | ı | ı | ŧ | t | ı | 8.6E-02 | 3.6E-02 | ē | 6.0E-02 | | Endnin Aldehyde | 0 | ı | 1 | 2 | 3.0E-01 | - | 1 | na | 3.0E-01 | ! | ; | 1 | : | 1 | ŀ | ı | 1 | : | ı | 2 | 3.0E-01 | | Parameter | Background | | Water Quality Criteria | ity Criteria | | | Wasteload Allocations | ocations | | An | Antidegradation Baseline | Baseline | | Antidegra | Antidegradation Allocations | s | × | Most Limiting Allocations | Viocations | | |---|------------|---------|------------------------|------------------|---------|-----------|-----------------------|------------|----------|---------|--------------------------|-------------|----------|---------------|-----------------------------|---|---------|---------------------------|------------|---------| | (ng/l unless noted) | Conc. | Acute | Chronic | Chronic HH (PWS) | Ŧ | Acute | Chronic HH (PWS) | (PWS) | Ŧ | Acute (| Chronic HH | HH (PWS) HH | | Acute Chronic | ic HH (PWS) | Ŧ | Acute | Chronic HI | HH (PWS) | ₹ | | Ethylbenzene | 0 | t | ı | 28 | 2.1E+03 | , | ţ | na 2 | 2.1E+03 | 1 | ı | 1 | | 1 | ı | ı | : | : | na 2 | 2.1E+03 | | Fluoranthene | 0 | t | 1 | 22 | 1.4E+02 | ı | 1 | na
L | 1.4E+02 | | t | i
f | | 1 | 1 | | ; | i | en
T | 1.4E+02 | | Fluorene | 0 | 1 | : | 80 | 5.3E+03 | : | : | na 5 | 5.3E+03 | 1 | ı | ; | | 1 | • | ı | : | ı | an
0 | 6.3E+03 | | Foaming Agents | 0 | 1 | : | ec | ; | ı | ı | B | ; | 1 | | 1 | | 1 | ı | ı | : | ı | 20 | · | | Guthion | 0 | 1 | 1.0E-02 | BU | ; | ı | 1.0E-02 | B | ; | ı | ı | 1 | | ‡
1 | ı | ı | : | 1.0E-02 | na
na | 1 | | Heptachlor ^c | 0 | 5.2E-01 | 3.8E-03 | 2 | 7.9E-04 | 5.2E-01 | 3.8E-03 | na 7 | 7.9E-04 | ı | ı | t | | 1 | 1 | 1 | 5.2E-01 | 3.8E-03 | T | 7.9E-04 | | Heptachlor Epoxide ^c | 0 | 5.2E-01 | 3.8E-03 | ē | 3.9E-04 | 5.2E-01 | 3.8E-03 | | 3.9E-04 | | t | 1 | | 2 | I | i | 5.2E-01 | 3.8E-03 | 2 | 3.9E-04 | | Hexachlorobenzene ^C | 0 | 1 | ; | E. | | | : | | 2.9E-03 | 1 | : | ! | | 1 | ı | ı | ; | : | 2 | 2.9E-03 | | Hexachlorobutadiene ^C | o | , | : | ē | 1.8E+02 | 1 | į | | 1.8E+02 | ı | 1 | | | 1 | ı | 1 | ; | ı | a
L | 1.8E+02 | | Hexachlorocyclohexane
Aloha-BHC ^c | c | | ł | a
C | 7 BE | ı | 1 | 8 | 4 OF 03 | | , | ; | | : | ı | 1 | ; | ; | 2 | 4 95.07 | | Heyachlorocyclobexana | • | | ı | <u> </u> | # | ı | ı | | 4.9E-02 | I | , | !
! | | 1 | l | l | : | , | | | | Beta-BHC ^c | 0 | ı | ı | ec | 1.7E-01 | ı | ţ | en
T | 1.7E-01 | í | ŧ | 1 | | 1 | ı | ı | ; | : | 2 | 1.7E-01 | | Hexachlorocyclohexane
Gamma-BHC ^c (Lindane) | ٥ | 9.5E-01 | gu
Bu | E C | 1.8E+00 | 9.5E-01 | ı | e
+ | 1.8E+00 | ı | 1 | ! | | : | ı | ı | 9.5E-01 | : | Da . | 1.8E+00 | | Hexachlorocyclopentadiene | 0 | ı | ı | g | 1.16+03 | ı | ı | | 1.1E+03 | ı | ı | ! | | 1 | 1 | ; | ; | ı | na
1 | 1.1E+03 | | Hexachloroethane ^c | 0 | ı | ı | 5 | 3.36+01 | : | | | 3.3E+01 | ı | ; | 1 | | 1 | 1 | 1 | ; | 1 | na 3 | 3.3E+01 | | Hydrogen Sulfide | 0 | ş | 2.0E+00 | ē | | • | 2.0E+00 | 2 | 1 | ; | : | ı | | I t | 1 | 1 | · | 2.0E+00 | 23 | : | | Indeno (1,2,3-cd) pyrene ^c | 0 | 1 | ı | ē | 1.8E-01 | ı | 1 | na
1 | 1.8E-01 | ı | ı | 1 | | 1 | : | : | : | 1 | 2 | 1.8E-01 | | Iron | 0 | ١ | ٠ | <u>6</u> | ı | ı | ı | 8 0 | 1 | ı | , | ; | | 1 | 1 | : | ı | : | e | : | | Isophorane ^c | 0 | ; | ı | 8 | 9.6E+03 | 1 | 1 | en
9 | 9.6E+03 | 1 | , | 1 | | 1 | ; | ; | : | : | ne 9 | 9.6E+03 | | Kepone | 0 | ı | 0.0E+00 | e | ı | : | 0.0E+00 | ē | | ı | : | 1 | | 1 | ŀ | 1 | i | 0.0E+00 | EU. | : | | Lead | 0 | 4.9E+01 | 5.6E+00 | ē | ı | 4.9E+01 | 5.6E+00 | ē | ì | 1 | 1 | • | | : | ŧ | 1 | | 5.6E+00 | P.S | : | | Malathion | o | 1 | 1.05-01 | ē | 1 | ı | 1.0E-01 | 5 | ı | ſ | ; | ! | | 1 | : | ı | ı | 1.05-01 | 2 | ; | | Мапдапеse | 0 | : | ı | 8 | ı | ı | , | œ. | 1 | | ; | 1 | | 1 | 1 | 1 | ı | : | 13.
8. | , | | Mercury | 0 | 1.4E+00 | 7.7E-01 | : | ; | 1.4E+00 | 7.7E-01 | : | ; | t | ı | | | 1 | ı | ; | 8 | 7.7E-01 | ; | ; | | Methyl Bromide | 0 | : | • | <u>6</u> | 1.5E+03 | i | ı | en
L | 1.5E+03 | 1 | | : | | : | t | ı | ; | : | 2 | 1.5E+03 | | Methylene Chloride ^c | 0 | : | • | ם | 5.9E+03 | ı | ı | na
S | 5.9E+03 | 1. | 1 | 1 | | : | t | ı | ţ | : | na 5 | 5.9E+03 | | Methoxychlor | 0 | ; | 3.0€-02 | B | 1 | ı | 3.0E-02 | œ. | 1 | ; | , | ; | | 1 | : | ı | | 3.0E-02 | 2 | ; | | Mirex | 0 | ı | 0.08+00 | вс | 1 | , | 0.0E+00 | na | ı | ŀ | ı | | | 1 | 1 | 1 | | 0.0E+00 | e c | , | | Nickel | 0 |
1.0E+02 | 1.1E+01 | E.C. | 4.6E+03 | 1.0E+02 | 1.1E+01 | na 4 | 4.6E+03 | ı | ; | ; | | 1 | , | 1 | 1.0€+02 | 1.1E+01 | 4 | 4.6E+03 | | Nitrate (as N) | 0 | 1 | ļ | e C | ' | ŧ | ı | na | 1 | : | ŧ | 1 | | ı | 1 | ı | J | 1 | EU. | : | | Nitrobenzene | 0 | ŧ | t | å | 6.9E+02 | : | 1 | na 6 | 6.9E+02 | 1 | ı | : | | t | ţ | ı | , | : | na 6 | 6.9E+02 | | N-Nitrosodimethylamine ^C | 0 | ı | 1 | e. | 3.0E+01 | | 1 | na | 3.0E+01 | : | 1 | 1 | | 1 | 1 | : | ı | ; | na 3 | 3.0E+01 | | N-Nitrosodiphenylamine ^C | 0 | t | í | B | 6.0E+01 | ı | 1 | na 6 | 6.0E+01 | ı | ı | ı | | 1 | ı | 1 | 1 | ı | na 6 | 6.0E+01 | | N-Nitrosodi-n-propylamine ^C | 0 | , | ı | ğ | 5.1E+00 | : | ı | na 5 | 5, 1E+00 | : | : | : | | | i | ı | 1 | : | na
5 | 5.1E+00 | | Nonylphenal | 0 | 2.8E+01 | 6.6E+00 | : | 1 | 2.8E+01 (| 6.6E+00 | ec | ı | ı | 1 | 1 | | : | : | ı | 2.8E+01 | 6,6E+00 | па | 1 | | Parathion | 0 | 6.5E-02 | 1.3E-02 | 8 2 | i | 6.5E-02 | 1.3E-02 | B | ı | ı | t | 1 | | 1 | 1 | ı | 6.6E-02 | 1.3E-02 | B E | | | PCB Total ^C | 0 | 1 | 1.4E-02 | BE | 6.4E-04 | ı | 1.4E-02 | an
G | 6.4E-04 | ı | ı | ; | | 1 | ; | ı | | 1.4E-02 | Па | 6.4E-04 | | Pentachlorophenol ^c | 0 | 1.3E+01 | 1.0E+01 | Ba | 3.0E+01 | 1.3E+01 | 1.0E+01 | na 3 | 3.0E+01 | ı | ı | ; | | : | ; | 1 | 1.3E+01 | 1.0E+01 | na
3 | 3.0E+01 | | Phenol | o | ı | ı | æ | 8.6E+05 | ; | ı | na 8 | 8.6E+05 | ı | ; | ! | | į | 1 | , | 1 | : | na 8 | 8,6€+05 | | Pyrene | 0 | ı | ; | 2 | 4.0E+03 | 4 | ; | na 4 | 4.0E+03 | ı | ı | 1 | | 1 | ı | ı | 1 | : | na 4 | 4.0E+03 | | Radionuclides | 0 | , | 1 | 5 | 1 | 1 | ; | na | 1 | ı | · | : | | 1 | ı | 4 | t | : | E . | ; | | Gross Alpha Activity | c | | | Š | | | | ; | | | | | | | | | | | | | | Beta and Photon Activity | 5 | : | : | 2 | ı | ı | : | g
L | ; | ı | ı | !
! | | 1 | ı | ı | ı | | 2 | t | | (mrem/yr) | 0 | ı | : | 異 | 4.0E+00 | ı | | na 4 | 4.0E+00 | ; | | : | | : | ; | : | • | ; | na 4 | 4.0E+00 | | Radium 226 + 228 (pCVL) | 0 | ı | : | 8 | : | ı | ; | er. | 1 | : | 1 | 1 | | 1 | ı | ı | ı | ŧ | eu. | ţ | | Uranium (ug/l) | ٥ | • | ; | E . | - | 1 | | ec. | | 1 | 1 | | \dashv | 1 | ' | | • | | na | : | Parameter | Background | | Water Quality Criteria | ity Criteria | | | Wasteload Allocations | \locations | | ⋖ | Antidegradation Baseline | on Baseline | | Anti | Antidegradation Allocations | Allocations | | 2 | lost Limiting | Most Limiting Allocations | | |---|------------|---------|------------------------|------------------|---------|---------|-----------------------|------------|---------|-------|--------------------------|-------------|---|-------|-----------------------------|-------------|---|---------|---------------|---------------------------|---------| | (ng/j unless nated) | Conc. | Acute | Chronic | Chronic HH (PWS) | Ŧ | Acute | Chronic HH (PWS) | (PWS) | 王 | Acute | Chronic | HH (PWS) | Ŧ | Acute | Chronic F | HH (PWS) | Ŧ | Acute | Chronic | HH (PWS) | Ŧ | | Selenium, Total Recoverable | 0 | 2.0E+01 | 5.0E+00 | na | 4.2E+03 | 2.0E+01 | 5.0E+00 | na | 4.2E+03 | 1 | ı | 1 | 1 | 1 | 1 | 1 | ı | 2.0E+01 | 5.0E+00 | BU | 4.2E+03 | | Silver | 0 | 1.0E+00 | ; | 80 | ; | 1.0E+00 | ŧ | na | | ı | ı | Ι. | ţ | 1 | 1 | ł | ĺ | 1.0E+00 | ; | ē | | | Sulfate | 0 | ; | : | na | ; | ; | ı | 9 | ; | ı | 1 | 1 | ; | ı | 1 | 1 | 1 | | : | 2 | | | 1,1,2,2-Tetrachloroethane ^c | 0 | 1 | ; | 80 | 4.0E+01 | ; | ı | вг | 4.0E+01 | ı | ı | 1 | i | 1 | : | ı | ı | , | ŀ | Ē | 4.0E+01 | | Tetrachloroethylene ^c | 0 | ı | ; | æ | 3.3E+01 | ı | ı | na
na | 3.3E+01 | ı | ı | ı | ı | ı | ı | 1 | 1 | ı | ı | 2 | 3.3E+01 | | Thallium | 0 | 1 | 1 | 80 | 4.7E-01 | 1 | ; | na | 4.7E-01 | ŧ | ; | , | ı | ı | ı | 1 | ı | 1 | : | ē | 4.7E-01 | | Toluene | 0 | í | ı | e u | 6.0E+03 | : | 1 | na
Na | 6.0E+03 | ı | į | ŀ | ì | ı | ŀ | 1 | ı | 1 | : | 2 | 6.0E+03 | | Total dissolved solids | 0 | ı | ; | 9 | ; | ì | ı | eu | ı | ı | ; | t | 1 | t | 1 | 1 | ı | 1 | ı | E . | ı | | Toxaphene ^c | 0 | 7.3E-01 | 2.0E-04 | na | 2.8E-03 | 7.3E-01 | 2.0E-04 | na | 2.8E-03 | : | ı | ; | | ı | ŧ | 1 | ı | 7.3E-01 | 2.0E-04 | a. | 2.8E-03 | | Tributyllin | 0 | 4.6E-01 | 7.2E-02 | E | ı | 4.6E-01 | 7.2E-02 | na | ; | ı | 1 | 1 | 1 | ı | : | ; | 1 | 4.6E-01 | 7.2E-02 | 2 | ı | | 1,2,4-Trichlorobenzene | 0 | 1 | ţ | B | 7.0E+01 | ı | 1 | E L | 7.0E+01 | ı | ı | ı | 1 | ı | ı | ı | ; | ; | : | na | 7.0E+01 | | 1,1,2-Trichlorgethane ^c | 0 | 1 | ŧ | па | 1.6E+02 | 1 | ı | E | 1.6E+02 | ı | i | t | ı | 1 | ı | ı | ł | 1 | : | E | 1.6E+02 | | Trichloraethylene ^c | 0 | 1 | ŧ | Па | 3.0E+02 | ŧ | ı | БП | 3.0E+02 | ı | ı | ı | ı | 1 | 1 | ı | ı | 1 | ı | E | 3.0E+02 | | 2,4,6-Trichlaraphenal ^c | 0 | ; | ŀ | B | 2.4E+01 | ŀ | ı | ē | 2.4E+01 | ; | ı | : | 1 | ı | ŧ | ı | ı | , | : | 29 | 2.4E+01 | | 2-(2,4,5-Trichloraphenaxy)
propionic acid (Silvex) | 0 | l | 1 | ē | 1 | 1 | 1 | ē | i | ı | ; | ł | 1 | 1 | ł | ı | 1 | | : | 2 | ı | | Vinyl Chloride ^C | 0 | ı | t | 밀 | 2.4E+01 | : | : | na | 2.4E+01 | 1 | 1 | 1 | ı | ı | ; | ı | 1 | · | ŧ | ē | 2.4E+01 | | Zinc | 0 | 6.5E+01 | 6.6E+01 | e
E | 2.6E+04 | 5.5E+01 | 6.6E+01 | па | 2.6E+04 | ı | ı | ı | t | 1 | 1 | ı | ı | 6.5E+01 | 6.6E+01. | Ē | 2.6E+04 | - All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise - 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals - Metals measured as Dissolved, unless specified otherwise - 4. "C" indicates a carcinogenic parameter - Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information. Antidegradation WLAs are based upon a complete mix. - 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic - = (0.1(WQC background conc.) + background conc.) for human health - Harmonic Mean for Carcinogens. To apply mixing ratios from a model set the stream flow equal to (mixing ratio 1), effluent flow equal to 1 and 100% mix. 7. WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens and | Metal | Target Value (SSTV) | Note: do not use QL's lower than the | |--------------|---------------------|--------------------------------------| | Antimony | 6.4E+02 | minimum QL's provided in agency | | Arsenic | 9.0E+01 | guldance | | Barinm | па | | | Cadmium | 3.9E-01 | | | Chromium III | 2.5E+01 | | | Chromium VI | 6.4E+00 | | | Copper | 2.8E+00 | | | lron | na | | | Lead | 3.4E+00 | | | Manganese | na | | | Mercury | 4.6E-01 | | | Nickel | 6.8E+00 | | | Selenium | 3.0E+00 | | | Silver | 4.2E-01 | | | Zinc | 2.6E+01 | | | | | | DMR QA/QC Permit #:VA0089796 Facility: The Nature Conservancy | Rec'd | Parameter Description | QTY | Lim Avg | QTY MAX | Lim Max | Quantity
Unit Lim | CONC | Lim Min | CONC | Lim Avg | CONC | Lim Max | |-----------------------|-----------------------|------|---------|---------|--------------|----------------------|------|---------|------|----------|-------------------------------|---------| | 10-Jul-2008 10-Jul-08 | 1,1,1-TRICHLOROETHANE | NOLL | ***** | NULL | **** | NULL | NULL | ****** | NOLL | **** | 10° | 112 | | | 1,1,1-TRICHLOROETHANE | NOLL | **** | NULL | ***** | NULL | NULL | ****** | NULL | ******* | ≺QL | 112 | | 15-May-2009 | 1,1,1-TRICHLOROETHANE | NULL | ***** | NOLL | **** | NULL | NULL | *** | NULL | **** | <1 | 112 | | 05-Oct-2009 | 1,1,1-TRICHLOROETHANE | NOLL | ***** | NULL | | אחרר | NALL | **** | NOLL | ****** | <1 | 112 | | 24-Feb-2010 | 1,1,1-TRICHLOROETHANE | NULL | ****** | NULL | **** | NULL | NULL | **** | NULL | ****** | <1 | 112 | | 20-Oct-2010 | 1,1,1-TRICHLOROETHANE | NOLL | **** | NULL | | NULL | NULL | ***** | NOLL | ***** | <1 | 112 | | 27-May-2011 | 1,1,1-TRICHLOROETHANE | NULL | ***** | NULL | | NULL | אחרר | **** | NOLL | ****** | 70> | 112 | | 29-Dec-2011 | 1,1,1-TRICHLOROETHANE | NULL | **** | NULL | *** | NULL | NULL | **** | NULL | *** | 70> | 112 | | 13-Jun-2012 Hay 12- | 1,1,1-TRICHLOROETHANE | NULL | **** | NULL | **** | NULL | NULL | ******* | NOLL | ****** | <ql< td=""><td>112</td></ql<> | 112 | | _ | 1,1-DICHLOROETHYLENE | NULL | **** | NULL | **** | NULL | NOLL | ***** | NOLL | ******* | 7 0 > | 7 | | 19-Dec-2008 | 1,1-DICHLOROETHYLENE | NOLL | ***** | NULL | **** | NULL | NOLL | ******* | NOLL | ******* | ¬o≻ | 7 | | 15-May-2009 | 1,1-DICHLOROETHYLENE | NULL | ****** | NOLL | | NOLL | NOLL | ***** | NALL | ******* | L> | 7 | | 05-Oct-2009 | 1,1-DICHLOROETHYLENE | NOLL | **** | NULL | ***** | NULL | NOLL | ***** | NALL | ******* | L> | 7 | | 24-Feb-2010 | 1,1-DICHLOROETHYLENE | NULL | ****** | NULL | ******* | NULL | NULL | ******* | אחרר | ****** | <1 | 7 | | 20-Oct-2010 | 1,1-DICHLOROETHYLENE | NOLL | ****** | NULL | ********* | NULL | TION | **** | NALL | ****** | <1 | 7 | | 27-May-2011 | 1,1-DICHLOROETHYLENE | NULL | ***** | NULL | ****** | NULL | TION | **** | NOLL | ****** | -all | 7 | | 29-Dec-2011 | 1,1-DICHLOROETHYLENE | NULL | ******* | NULL | NOLL | NULL | NOLL | **** | NULL | ******* | 70≻ | 7 | | 13-Jun-2012 | 1,1-DICHLOROETHYLENE | NULL | *** | NULL | TON ******* | NULL | NULL | ***** | NOLL | ****** | ≺QL | 7 | | 10-Jul-2008 | 1,2-DICHLOROBENZENE | NOLL | ***** | NULL | | MULL | TION | **** | אחרר | ****** | ≺QL | 15 | | 19-Dec-2008 | 1,2-DICHLOROBENZENE | NULL | ****** | NULL | KEKKKKE | NULL | TION | ******* | ไากณ | ******* | <a∟< td=""><td>15</td></a∟<> | 15 | | 15-May-2009 | 1,2-DICHLOROBENZENE | NULL | **** | NULL | ******* | NULL | NOLL | ******* | NULL | ****** | <1 | 15 | | 05-Oct-2009 | 1,2-DICHLOROBENZENE | NULL | **** | NULL | ****** | NOLL | TION | **** | NNFF | ***** | <1 | 15 | | 24-Feb-2010 | 1,2-DICHLOROBENZENE | NOLL | ***** | NULL | 770N ******* | NULL | NOLL | ***** | NOLL | ****** | -<1 | 15 | | 20-Oct-2010 | 1,2-DICHLOROBENZENE |
NOLL | **** | NULL | ********* | NULL | NOLL | **** | NOLL | ******** | \^ | 15 | | 27-May-2011 | 1,2-DICHLOROBENZENE | NOLL | **** | NOLL | 170N ******* | NULL | TION | ***** | NOLL | ****** | <ql< td=""><td>15</td></ql<> | 15 | | 29-Dec-2011 | 1,2-DICHLOROBENZENE | NULL | **** | NOLL | | NULL | NOLL | ****** | NULL | ****** | <ql< td=""><td>15</td></ql<> | 15 | | 13-Jun-2012 | 1,2-DICHLOROBENZENE | NULL | ***** | NOLL | | NULL | NULL | **** | TON | ***** | .αL | 15 | | 10-Jul-2008 | 1,2-DICHLOROETHANE | NULL | ****** | NOLL | | NULL | NOLL | **** | NUEL | ******* | <ql< td=""><td>5</td></ql<> | 5 | | 19-Dec-2008 | 1,2-DICHLOROETHANE | NULL | ****** | NOLL | ***** | NULL | NOLL | ***** | NOLL | ******* | <ql< td=""><td>5</td></ql<> | 5 | | 15-May-2009 | 1,2-DICHLOROETHANE | NULL | **** | TIGN | **** | NULL | TION | ***** | NOLL | ****** | <1 | 5 | | 05-Oct-2009 | 1,2-DICHLOROETHANE | NULL | ****** | NOLL | ***** | NULL | NOLL | **** | NOLL | ***** | <1 | 5 | | 24-Feb-2010 | 1,2-DICHLOROETHANE | NOFF | ****** | NULL | **** | NOLL | NULL | ******* | NOLL | ******* | <1 | 5 | | 20-Oct-2010 | 1,2-DICHLOROETHANE | NULL | **** | NOLL | | NOLL | NULL | *** | NOLL | **** | <1 | 5 | | 27-May-2011 | 1,2-DICHLOROETHANE | NULL | ***** | NOLL | | NULL | NOLL | ***** | אחרד | ******* | <ql< td=""><td>5</td></ql<> | 5 | | 29-Dec-2011 | 1,2-DICHLOROETHANE | NOLL | ***** | TION | | NNCC | NOLL | **** | NOLL | ****** | <ql< td=""><td>5</td></ql<> | 5 | | 13-Jun-2012 | 1,2-DICHLOROETHANE | NOLL | ****** | NULL | | NNTF | NULL | **** | NNLL | ***** | <ql< td=""><td>5</td></ql<> | 5 | | 10-לוט-10- | BENZENE (AS C6H6) | NULL | **** | NULL | ***** | NULL | NULL | ***** | NULL | ****** | <ql< td=""><td>5</td></ql<> | 5 | | | | | | | | : | | | | | | | | | | | | | | | - | | | ****** | | , | |-------------|--------------------------|------|---------------------------------------|------|------------------|------|-------|---------|------|----------|--------------------------------|-----| | 19-Dec-2008 | BENZENE (AS C6H6) | NULL | **** | NULL | | NULL | NULL | | NOLL | | , Car | 0 | | 15-May-2009 | BENZENE (AS C6H6) | NULL | ***** | NULL | **** | NULL | NULL | **** | NOLL | *** | ₹ | 5 | | 05-Oct-2009 | BENZENE (AS C6H6) | NULL | **** | NULL | ***** | NULL | NULL | **** | NOLL | **** | ₹ | 2 | | 24-Feb-2010 | BENZENE (AS C6H6) | NULL | **** | NULL | ***** | NULL | NULL | ******* | NULL | **** | <1 | 9 | | 20-Oct-2010 | BENZENE (AS C6H6) | NULL | ******* | NULL | **** | NULL | NULL | ******* | NULL | ****** | | 'n | | 27-May-2011 | BENZENE (AS C6H6) | NULL | ****** | NULL | ******* | NOLL | NULL | ******* | NULL | ****** | <ql< td=""><td>5</td></ql<> | 5 | | 29-Dec-2011 | BENZENE (AS C6H6) | NULL | ****** | NULL | ***** | NULL | NOLL | ****** | NOLL | **** | ςαL | 5 | | 13-Jun-2012 | BENZENE (AS C6H6) | NULL | **** | NOLL | **** | NULL | NOLL | ******* | NULL | ****** | 70> | 5 | | 10-Jul-2008 | CARBON TETRACHLORIDE | NULL | **** | NULL | 化长柱水柱水柱 水 | NULL | NULL | ******* | NULL | ***** | <ql< td=""><td>2</td></ql<> | 2 | | 19-Dec-2008 | CARBON TETRACHLORIDE | NULL | ******* | NULL | ***** | NULL | NULL | ****** | NOLL | ***** | -\Q\ | 2 | | 15-May-2009 | CARBON TETRACHLORIDE | NOLL | ******* | NULL | **** | NOLL | NOLL | ****** | NOLL | **** | ₹ | 2 | | 05-Oct-2009 | CARBON TETRACHLORIDE | NULL | ****** | NOLL | **** | NUCL | NOLL | ******* | NULL | **** | <٦ | 2 | | 24-Feb-2010 | CARBON TETRACHLORIDE | NOLL | ****** | NULL | **** | NULL | NOLL | ***** | NULL | ***** | ۲ | 2 | | 20-Oct-2010 | CARBON TETRACHLORIDE | NULL | *** | NOLL | **** | NOTE | NULL | ***** | NULL | ***** | ٧ | 2 | | 27-May-2011 | CARBON TETRACHLORIDE | NULL | ***** | NULL | **** | NULL | NULL | ******* | NOLL | ***** | ≺a∟ | 2 | | 29-Dec-2011 | CARBON TETRACHLORIDE | NULL | **** | NULL | ***** | NOLL | NULL | ****** | NULL | ******* | ≺QL | 2 | | 13-Jun-2012 | CARBON TETRACHLORIDE | NULL | ******* | NOLL | ***** | NULL | NULL | ******* | NULL | ******* | <ql< td=""><td>2</td></ql<> | 2 | | 10-Jut-2008 | CHLOROFORM (AS CHCL3) | NOLL | **** | NOLL | ***** | NULL | NULL | ***** | NULL | ***** | ≺QL | 100 | | 19-Dec-2008 | CHLOROFORM (AS CHCL3) | NOLL | **** | NOLL | **** | NULL | NULL | ******* | NULL | ******** | 70> | 100 | | 15-May-2009 | CHLOROFORM (AS CHCL3) | NULL | ****** | NOLL | ***** | NULL | NULL | **** | NULL | **** | <1 | 100 | | 05-Oct-2009 | CHLOROFORM (AS CHCL3) | NULL | **** | NOLL | ***** | NOLL | NULL | ***** | NULL | *** | ۲۷ | 100 | | 24-Feb-2010 | CHLOROFORM (AS CHCL3) | NULL | ******* | NULL | ***** | NULL | NOLL | ****** | NULL | **** | ₹ | 100 | | 20-Oct-2010 | CHLOROFORM (AS CHCL3) | NULE | ***** | NULL | **** | NULL | NOLL | ***** | NULL | ***** | <1 | 100 | | 27-May-2011 | CHLOROFORM (AS CHCL3) | NULL | **** | NULL | **** | NOLL | NULL | ***** | NULL | *** | άρ | 100 | | 29-Dec-2011 | CHLOROFORM (AS CHCL3) | NOLL | **** | NOLL | **** | NOLL | NULL | ***** | NULE | **** | å | 100 | | 13-Jun-2012 | CHLOROFORM (AS CHCL3) | NULL | ***** | NOLE | ***** | חחרר | NULL | **** | NULL | ******* | ^a <u>p</u> | 100 | | 10-Jul-2008 | CIS-1,2-DICHLOROETHYLENE | NULL | ***** | NULL | **** | אמרר | NULL | ****** | NULL | **** | å | 70 | | 19-Dec-2008 | CIS-1,2-DICHLOROETHYLENE | NULL | **** | NULL | *** | NOLL | NULL | ***** | NULL | ***** | <q_l< td=""><td>20</td></q_l<> | 20 | | 15-May-2009 | CIS-1,2-DICHLOROETHYLENE | NULL | ****** | NULL | **** | NOLL | NULL | ****** | NOLL | *** | 1.0 | 20 | | 05-Oct-2009 | CIS-1,2-DICHLOROETHYLENE | NULL | ***** | NOLL | **** | NOLL | NULL | ***** | NOLL | ***** | 2.2 | 20 | | 24-Feb-2010 | CIS-1,2-DICHLOROETHYLENE | NOLL | **** | NOLL | ****** | NOLL | NULL | *** | NULL | ***** | 3.0 | 20 | | 20-Oct-2010 | CIS-1,2-DICHLOROETHYLENE | NULL | ******* | NOLL | ******* | NULL | NULL | ***** | NOLL | ****** | 1.1 | 70 | | 27-May-2011 | CIS-1,2-DICHLOROETHYLENE | NULL | ******* | NULL | ***** | NULL | NOLL | ******* | NOLL | *** | ¢0L | 70 | | 29-Dec-2011 | CIS-1,2-DICHLOROETHYLENE | NULL | ****** | NULL | ***** | NULL | NOLL. | **** | NULL | ***** | °0₽ | 20 | | 13-Jun-2012 | CIS-1,2-DICHLOROETHYLENE | NALL | ****** | NULL | *** | NULL | NOLL | ****** | NULL | **** | °0∟ | 20 | | 10-Jul-2008 | DICHLOROMETHANE | NULL | ******* | NULL | ***** | NULL | NULL | ***** | NULL | **** | å | 2 | | 19-Dec-2008 | DICHLOROMETHANE | NOLL | ******* | NULL | ***** | NALL | NULL | **** | NULL | ****** | ^QL | 5 | | 15-May-2009 | DICHLOROMETHANE | NULL | **** | NULL | ****** | NOLL | NULL | ****** | NULL | **** | <1 | છ | | 05-Oct-2009 | DICHLOROMETHANE | NULL | · · · · · · · · · · · · · · · · · · · | NOLL | **** | NULL | NULL | ***** | NULL | ****** | 7 | 5 | | 24-Feb-2010 | DICHLOROMETHANE | NULL | ***** | NOLL | ****** | NULL | NULL | **** | NULL | ***** | . <4 | 5 | | 20-Oct-2010 | DICHLOROMETHANE | NULL | ***** | NOLL | ****** | NOLL | NULL | **** | NULL | ******* | ۲ | 5 | | 27-May-2011 | DICHLOROMETHANE | NOLL | ***** | NOLL | **** | NULL | NULL | **** | NULL | ***** | å | 2 | | 29-Dec-2011 | DICHLOROMETHANE | NULL | ***** | NULL | **** | NULL | NULL | ******* | NULL | **** | _do/ | 5 | | | | | | | !
! | | | | | | | | | 13-Jun-2012 | DICHLOROMETHANE | NULL | ****** | NULL | TION ******* | NOLL | NOLL | ******* | NOLL | **** | <ql< th=""><th>5</th></ql<> | 5 | |-------------|--------------------------|----------|---|----------|--------------|------|------|---------|------|----------|-------------------------------|---------| | 10-Jul-2008 | ETHYLBENZENE | NULL | *** | NOLL | **** | NULL | NOLL | ******* | NALL | ******* | <ql< td=""><td>320</td></ql<> | 320 | | 19-Dec-2008 | ETHYLBENZENE | NULL | *** | NOLL | **** | NULL | NOLL | ******* | NOLL | ****** | ≺QL | 320 | | 15-May-2009 | ETHYLBENZENE | NULL | ******* | NULL | ****** | NULL | NULL | ***** | NOLL | **** | <1 | 320 | | 05-Oct-2009 | ETHYLBENZENE | NULL | ******* | NULL | *** | NOLL | NULL | ***** | NULL | ******* | 1 > | 320 | | 24-Feb-2010 | ETHYLBENZENE | NOL | ***** | NULL | *** | NULL | NULL | *** | NOLL | ****** | 1 > | 320 | | 20-Oct-2010 | ETHYLBENZENE | NULL | **** | NULL | **** | NOLL | NULL | ***** | NULL | ****** | 1> | 320 | | 27-May-2011 | ETHYLBENZENE | NULL | ******* | NULL | *** | NULL | NULL | ****** | NOLL | ***** | γo, | 320 | | 29-Dec-2011 | ETHYLBENZENE | NOLL | ******* | NOLL | **** | NOLL | NULL | **** | NULL | ****** | å | 320 | | 13-Jun-2012 | ETHYLBENZENE | NULL | ****** | NOLL | ****** | NULL | NOLL | ***** | NULL | ***** | ςΩL | 320 | | 10-Jul-2008 | FLOW | .000388 | 0.0144 | 0.001582 | NF | MGD | NOLL | **** | NULL | ******** | NULL | ***** | | 19-Dec-2008 | FLOW | .001325 | 0.0144 | 0.001349 | NF. | MGD | NALL | ******* | NOLL | ****** | NULL | **** | | 15-May-2009 | FLOW | .001381 | 0.0144 | 0.001399 | NF | MGD | NULL | **** | NOLL | ******* | NULL | ****** | | 05-Oct-2009 | FLOW | .001413 | 0.0144 | 0.001439 | NF | MGD | NULL | ******* | NOLL | ******* | NULL | **** | | 24-Feb-2010 | FLOW | 1000001 | 0.0144 | 0.000001 | NE | MGD | NULL | **** | NOLL | ***** | NULL | **** | | 20-Oct-2010 | FLOW | 000000 | 0.0144 | 0.00000 | NF | MGD | NOLL | ******* | NOLL | ****** | NULL | ***** | | 27-May-2011 | FLOW | .003589 | 0.0144 | 0.014228 | NF | MGD | NOLL | ****** | NOLL | **** | NOLL | **** | | 29-Dec-2011 | FLOW | .000436 | 0.0144 | 62000. | NF | MGD | NOLL | **** | NULL | **** | NULL | ***** | | 13-Jun-2012 | FLOW | 1.000517 | 0.0144 | 0.000802 | 7N | MGD | NULL | **** | NOLL | ******* | NULL | ******* | | 10-Jul-2008 | ORGANICS, TOTAL VOLATILE | NOLL | ******* | NULL | ****** | NULL | NOLL | **** | NULL | ***** | 1.0 | 763 | | 19-Dec-2008 | ORGANICS, TOTAL VOLATILE | NOLL | *** | NOLL | ***** | NULL | NOLL | ***** | NOLL | ******* | 5.5 | 292 | | 15-May-2009 | ORGANICS, TOTAL VOLATILE | NOLL | ***** | NULL | *** | NULL | NOLL | ****** | NOLL | ******* | 2.2 | 763 | | 05-Oct-2009 | ORGANICS, TOTAL VOLATILE | NOLL | ******* | NULL | ******* | NULL | NULL | **** | NULL | ***** | 2.2 |
292 | | 24-Feb-2010 | ORGANICS, TOTAL VOLATILE | NOLL | ****** | NULL | **** | NULL | NOLL | ****** | NULL | ***** | 8.1 | 292 | | 20-Oct-2010 | ORGANICS, TOTAL VOLATILE | NULL | **** | NULL | ****** | NULL | NULL | ***** | NULL | | 9.5 | 763 | | 27-May-2011 | ORGANICS, TOTAL VOLATILE | NULL | ****** | NOLL | ****** | - | NOLL | **** | NULL | | 2.2 | 763 | | 29-Dec-2011 | ORGANICS, TOTAL VOLATILE | NULL | 大大· · · · · · · · · · · · · · · · · · · | NULL | *** | | NULL | **** | NULL | ****** | 70≻ | 292 | | 13-Jun-2012 | ORGANICS, TOTAL VOLATILE | NULL | **** | NULL | **** | NULL | NOLL | ******* | NOLL | ***** | -αr | 763 | | 10-Jul-2008 | Hd | NULL | ***** | NULL | | NULL | 6.7 | 6.0 | NULL | | 7.9 | 9.0 | | 19-Dec-2008 | Hd | NULL | **** | NULL | | NOLL | 7.6 | 6.0 | NULL | | 7.6 | 9.0 | | 15-May-2009 | Hd | NULL | **** | NULL | | NULL | 7.29 | 6.0 | NULL | | 7.79 | 0.6 | | 05-Oct-2009 | Hd | NULL | *** | NULL | | NULL | 7.45 | 6.0 | NOLL | | 8.02 | 9.0 | | 24-Feb-2010 | Hd | NULL | ****** | NULL | | NULL | 7.46 | 0.9 | | | 7.83 | 0.6 | | 20-Oct-2010 | Hd | NOLL | **** | NOLL | ****** | | 8.07 | 6.0 | | | 8.32 | 0.6 | | 27-May-2011 | Ha | NOLL | *** | NOLL | | NULL | 7.90 | 6.0 | | | 8.09 | 0.6 | | 29-Dec-2011 | HA | NOLL | **** | NULL | | NULL | 7.87 | 6.0 | | _ | 8.14 | 9.0 | | 13-Jun-2012 | Td. | NULL | **** | NOLL | *** | NOLL | 6.78 | 0.9 | NULL | | 7.70 | 9.0 | | 10~Jul-2008 | TETRACHLOROETHYLENE | NULL | ******* | NULL | · | NOLL | NOLL | ******* | NULL | | 1.0 | 2 | | 19-Dec-2008 | TETRACHLOROETHYLENE | NULL | ******* | NALL | | NULL | NOLL | **** | NULL | | (5.5 | 5 , 5 | | 15-May-2009 | TETRACHLOROETHYLENE | NULL | ****** | NULL | **** | | NULL | **** | NOLL | | 1.2 | 5 | | 05-Oct-2009 | TETRACHLOROETHYLENE | NULL | ******* | NULL | | NOLL | NOFF | ******* | NULL | | t><4 | 2 | | 24-Feb-2010 | TETRACHLOROETHYLENE | NOLL | ***** | NULL | | NULL | NOLL | ****** | | | (2.t | 5 | | 20-Oct-2010 | TETRACHLOROETHYLENE | NOLL | ******* | NULL | ****** | NULL | NULL | ******* | NULL | ****** | (8.4 | 2 | | | | | | | | | | | | |) | \ | | 07 May 2011 | TETOACU! ODOETUV! ENE | 11111 | ***** | N | ***** | | | ****** | | ****** | 2.7 | 3 | |-------------|---------------------------------|-------|---------|------|---------|------|------|---------|------|---------------------------------------|-------------------------------|-----| | 29-Dec-2011 | TETRACHLOROETHYLENE | I I | ******* | NOLL | ******* | NULL | NOLL | ******* | NULL | ***** | 1.0 | 5 | | 13-Jun-2012 | TETRACHLOROETHYLENE | NOL | ***** | NOLL | ******* | NULL | NULL | **** | NOEL | ****** | å | 5 | | 10-Jul-2008 | TOLUENE (AS C7H8) | NOLL | ******* | NULL | **** | NULL | NULL | **** | NULL | ******* | 10° | 5 | | 19-Dec-2008 | TOLUENE (AS C7H8) | NOLL | **** | NULL | ***** | NULL | NULL | ******* | NOLL | ******* | ¢0∟ | 5 | | 15-May-2009 | TOLUENE (AS C7H8) | NULL | ***** | NULL | ******* | NULL | NULL | ******* | NULL | ************************************* | ₹ | S. | | 05-Oct-2009 | TOLUENE (AS C7H8) | NOLL | *** | NULL | ******* | NOLL | NULL | ***** | NULL | *** | ₹ | 5 | | 24-Feb-2010 | TOLUENE (AS C7H8) | NULL | ******* | NOLL | ***** | NULL | NULL | **** | NULL | 在在本本本本本本本 | ₹ | 5 | | 20-Oct-2010 | TOLUENE (AS C7H8) | NULL | **** | NULL | **** | NULL | NULL | ***** | NULL | **** | ₽ | 3 | | 27-May-2011 | TOLUENE (AS C7H8) | NOLL | ****** | NULL | ******* | NULL | NOLL | **** | NULL | ***** | -âP | 5 | | 29-Dec-2011 | TOLUENE (AS C7H8) | NUEL | ******* | NULL | ****** | NULL | NULL | ***** | NULL | ****** | 9 | 5 | | 13-Jun-2012 | TOLUENE (AS C7H8) | NULL | ******* | NULL | ***** | NULL | NULL | **** | NULL | ****** | 401 | 5 | | 10-Jul-2008 | TRANS-1,2-DICHLOROETHYLENE | NOFF | ****** | NULL | **** | NULL | NULL | ***** | NULL | **** | ¢ôL | 100 | | 19-Dec-2008 | TRANS-1,2-DICHLOROETHYLENE | NULL | ******* | NULL | ******* | NULL | NOLL | **** | NULL | ****** | ਰੂ | 100 | | 15-May-2009 | TRANS-1,2-DICHLOROETHYLENE | NULL | *** | NULL | ******* | NULL | NULL | **** | NULL | **** | ₹ | 100 | | 05-Oct-2009 | TRANS-1,2-DICHLOROETHYLENE | NULL | ******* | NULL | **** | NULL | NULL | **** | NULL | **** | <1 | 100 | | 24-Feb-2010 | TRANS-1,2-DICHLOROETHYLENE | NULL | ***** | NULL | ***** | NUEL | NULL | ******* | NOLL | **** | ₹ | 100 | | 20-Oct-2010 | TRANS-1,2-DICHLOROETHYLENE | NOLL | ******* | NULL | **** | NULL | NULL | ******* | NULL | **** | ⊽ | 100 | | 27-May-2011 | TRANS-1,2-DICHLOROETHYLENE | NULL | **** | NOLL | **** | NULL | NULL | ****** | NOLL | ***** | <ql< td=""><td>100</td></ql<> | 100 | | 29-Dec-2011 | TRANS-1,2-DICHLOROETHYLENE | NOLL | ***** | NOLL | ***** | NULL | NULL | ******* | NULL | ****** | <ql< td=""><td>100</td></ql<> | 100 | | 13-Jun-2012 | TRANS-1,2-DICHLOROETHYLENE | NULL | *** | NULL | ****** | NULL | NULL | ****** | NOLL | ****** | å | 100 | | 10-Jul-2008 | TRICHLOROETHYLENE (TCE) (79016) | NULL | ****** | NOLL | ***** | NOFF | NOLL | ***** | NOLL | **** | ^o∟ | 5 | | 19-Dec-2008 | TRICHLOROETHYLENE (TCE) (79016) | NOLL | **** | NULL | ***** | NULL | NULL | ******* | NULL | ***** | ≺QL | 5 | | 15-May-2009 | TRICHLOROETHYLENE (TCE) (79016) | NULL | ******* | NOLL | ***** | _ | NOLL | ***** | NULL | ***** | <1 | 5 | | 05-Oct-2009 | TRICHLOROETHYLENE (TCE) (79016) | L_ | ******* | NOLL | *** | NULL | NULL | **** | NOLL | *** | ⊽ | 5 | | 24-Feb-2010 | TRICHLOROETHYLENE (TCE) (79016) | NULL | **** | NULL | ******* | | NULL | ***** | NOLL | *** | ₹ | 5 | | 20-Oct-2010 | TRICHLOROETHYLENE (TCE) (79016) | NULL | ******* | NOLL | ***** | NULL | NOLL | **** | NULL | ***** | ₽ | 5 | | 27-May-2011 | TRICHLOROETHYLENE (TCE) (79016) | NOLL | ****** | NULL | ***** | NULL | NULL | ***** | NOLL | ***** | ਰ੍ਹ | 5 | | 29-Dec-2011 | TRICHLOROETHYLENE (TCE) (79016) | NULL | ******* | NULL | ****** | NULL | NULL | **** | NOLL | **** | 횽 | 5 | | 13-Jun-2012 | TRICHLOROETHYLENE (TCE) (79016) | NOLL | **** | NOFE | **** | NULL | NOLL | ***** | NULL | ***** | γÖL | 5 | | 10-Jul-2008 | VINYL CHLORIDE | NULL | *** | NOLL | **** | NULL | NULL | **** | NOLL | 有你就你你你你不 | ^QL | 2 | | 19-Dec-2008 | VINYL CHLORIDE | NULL | **** | NULL | ***** | NULL | NULL | **** | NOLL | ***** | ≺QL | 2 | | 15-May-2009 | VINYL CHLORIDE | NULL | ***** | NOLL | ***** | NULL | NOLL | ****** | NOFF | ***** | ~ | 2 | | 05-Oct-2009 | VINYL CHLORIDE | NOLL | ***** | NULL | ****** | NOLL | NULL | **** | NULL | ******* | ₹ | 2 | | 24-Feb-2010 | VINYL CHLORIDE | NOLL | ***** | NOLL | ******* | NOLL | NOLL | **** | NULL | **** | <1 | 2 | | 20-Oct-2010 | VINYL CHLORIDE | NOLL | **** | NOLL | **** | NULL | NOLL | ***** | NOLL | ****** | | 2 | | 27-May-2011 | VINYL CHLORIDE | NULL | **** | NOLL | ***** | NULL | NOLL | ****** | NULL | ****** | <0F | 2 | | 29-Dec-2011 | VINYL CHLORIDE | NULL | ***** | NULL | **** | NOLL | NULL | ****** | TINN | ******* | 70> | 2 | | 13-Jun-2012 | VINYL CHLORIDE | NULL | **** | NOLL | ***** | NULL | NULL | ****** | NOLL | ***** | √OL | 2 | | 10-Jul-2008 | XYLENE (AS C8H10) | NULL | **** | NOLL | ****** | NULL | NULL | ******* | NULL | ******* | å | Ω. | | 19-Dec-2008 | XYLENE (AS C8H10) | NOLL | *** | NOLL | **** | NULL | NULL | ***** | NOLL | ******* | ςΩL | 5 | | 15-May-2009 | XYLENE (AS C8H10) | NULL | **** | NULL | ***** | NULL | NOLL | ***** | NULL | ******* | ۲ | 5 | | | XVI ENE (AS CRH10) | | ******* | Z | ******* | IIII | Ž | ******* | TION | ******* | 12 | 5 | | 24-Feb-2010 | XYLENE (AS C8H10) | NULL | ******* | NOLL | TTON ******* | | NOLL
NOLL | ***** | NOLL | ****** | ₹ | 5 | |-------------|-------------------|------|---------|------|--------------|------|--------------|-------|------|---------|-----------------------------|---| | 20-Oct-2010 | XYLENE (AS C8H10) | NULL | ******* | NULL | 710N ******* | | NOLL | **** | NULL | ***** | ₹ | 5 | | 27-May-2011 | XYLENE (AS C8H10) | NULL | ***** | NULL | N ******** | NOLL | | **** | NOLL | ******* | <ql< td=""><td>5</td></ql<> | 5 | | 29-Dec-2011 | XYLENE (AS C8H10) | NULL | ****** | NULL | NOCT | | NULL. | ***** | NULL | **** | <ql< td=""><td>5</td></ql<> | 5 | | 13-Jun-2012 | XYLENE (AS C8H10) | NULL | ******* | NULL | 110N ******* | | NULL | *** | NULL | ***** | √QL | 5 | #### Public Notice - Environmental Permit PURPOSE OF NOTICE: To seek public comment on a draft permit from the Department of Environmental Quality that will allow the release of treated wastewater into a water body in Arlington County, Virginia. PUBLIC COMMENT PERIOD: December 13, 2012 to 5:00 p.m. on January 14, 2013 PERMIT NAME: Virginia Pollutant Discharge Elimination System Permit – Wastewater issued by DEQ, under the authority of the State Water Control Board APPLICANT NAME, ADDRESS AND PERMIT NUMBER: The Nature Conservancy 21335 Signal Hill Plaza, Suite 100, Sterling, VA 20164 VA0089796 NAME AND ADDRESS OF FACILITY: The Nature Conservancy 4245 North Fairfax Drive, Arlington, VA 22203 PROJECT DESCRIPTION: The Nature Conservancy has applied for a reissuance of a permit for the private The Nature Conservancy. The applicant proposes to release treated groundwater at a rate of 0.0144 million gallons per day into a water body. There is no sludge generated from the treatment process. The facility proposes to release the treated groundwater in the Lubber Run, UT in Arlington County in the Potomac River watershed. A watershed is the land area drained by a river and its incoming streams. The permit will limit the following pollutants to amounts that protect water quality: pH, benzene, toluene, ethylbenzene, total xylene, carbon tetrachloride, chloroform, 1,1,1-trichloroethane, 1,2-dichlorobenzene, 1,1-dichloroethylene, cis 1,2-dichloroethylene, trans 1,2-dichloroethylene, dichloroethylene, trichloroethylene (TCE), tetrachloroethylene (PCE), 1,2-dichloroethane, vinyl chloride, 1,2-dichlorobenzene and total VOCs. HOW TO COMMENT AND/OR REQUEST A PUBLIC HEARING: DEQ accepts comments and requests for public hearing by email, fax or postal mail. All comments and requests must be in writing and be received by DEQ during
the comment period. Submittals must include the names, mailing addresses and telephone numbers of the commenter/requester and of all persons represented by the commenter/requester. A request for public hearing must also include: 1) The reason why a public hearing is requested. 2) A brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requester, including how and to what extent such interest would be directly and adversely affected by the permit. 3) Specific references, where possible, to terms and conditions of the permit with suggested revisions. A public hearing may be held, including another comment period, if public response is significant, based on individual requests for a public hearing, and there are substantial, disputed issues relevant to the permit. CONTACT FOR PUBLIC COMMENTS, DOCUMENT REQUESTS AND ADDITIONAL INFORMATION: The public may review the documents at the DEQ-Northern Regional Office by appointment, or may request electronic copies of the draft permit and fact sheet. Name: Douglas Frasier Address: DEQ-Northern Regional Office, 13901 Crown Court, Woodbridge, VA 22193 Phone: (703) 583-3873 Email: Douglas.Frasier@deq.virginia.gov Fax: (703) 583-3821 # State "Transmittal Checklist" to Assist in Targeting Municipal and Industrial Individual NPDES Draft Permits for Review ## Part I. State Draft Permit Submission Checklist In accordance with the MOA established between the Commonwealth of Virginia and the United States Environmental Protection Agency, Region III, the Commonwealth submits the following draft National Pollutant Discharge Elimination System (NPDES) permit for Agency review and concurrence. | NPDES Permit Number: Permit Writer Name: Date: November 2012 Major [] Minor [X] Industrial [X] Mun I.A. Draft Permit Package Submittal Includes: 1. Permit Application? 2. Complete Draft Permit (for renewal or first time permit – entire permit, including boilerplate information)? 3. Copy of Public Notice? 4. Complete Fact Sheet? 5. A Priority Pollutant Screening to determine parameters of concern? 6. A Reasonable Potential analysis showing calculated WQBELs? 7. Dissolved Oxygen calculations? 8. Whole Effluent Toxicity Test summary and analysis? | Yes X X X X X X | No | N/A X X X | |--|------------------|-----|--| | Date: 1 November 2012 Major [] Minor [X] Industrial [X] Mun I.A. Draft Permit Package Submittal Includes: 1. Permit Application? 2. Complete Draft Permit (for renewal or first time permit – entire permit, including boilerplate information)? 3. Copy of Public Notice? 4. Complete Fact Sheet? 5. A Priority Pollutant Screening to determine parameters of concern? 6. A Reasonable Potential analysis showing calculated WQBELs? 7. Dissolved Oxygen calculations? | Yes X X X X | No | X
X
X | | Major [] Minor [X] Industrial [X] Mun I.A. Draft Permit Package Submittal Includes: 1. Permit Application? 2. Complete Draft Permit (for renewal or first time permit – entire permit, including boilerplate information)? 3. Copy of Public Notice? 4. Complete Fact Sheet? 5. A Priority Pollutant Screening to determine parameters of concern? 6. A Reasonable Potential analysis showing calculated WQBELs? 7. Dissolved Oxygen calculations? | Yes X X X X | No | X
X
X | | I.A. Draft Permit Package Submittal Includes: Permit Application? Complete Draft Permit (for renewal or first time permit – entire permit, including boilerplate information)? Copy of Public Notice? Complete Fact Sheet? A Priority Pollutant Screening to determine parameters of concern? A Reasonable Potential analysis showing calculated WQBELs? Dissolved Oxygen calculations? | Yes X X X X | No | X
X
X | | Permit Application? Complete Draft Permit (for renewal or first time permit – entire permit, including boilerplate information)? Copy of Public Notice? Complete Fact Sheet? A Priority Pollutant Screening to determine parameters of concern? A Reasonable Potential analysis showing calculated WQBELs? Dissolved Oxygen calculations? | X
X
X
X | No | X
X
X | | Permit Application? Complete Draft Permit (for renewal or first time permit – entire permit, including boilerplate information)? Copy of Public Notice? Complete Fact Sheet? A Priority Pollutant Screening to determine parameters of concern? A Reasonable Potential analysis showing calculated WQBELs? Dissolved Oxygen calculations? | X
X
X
X | 110 | X
X
X | | Complete Draft Permit (for renewal or first time permit – entire permit, including boilerplate information)? Copy of Public Notice? Complete Fact Sheet? A Priority Pollutant Screening to determine parameters of concern? A Reasonable Potential analysis showing calculated WQBELs? Dissolved Oxygen calculations? | X
X
X | | X | | Copy of Public Notice? Complete Fact Sheet? A Priority Pollutant Screening to determine parameters of concern? A Reasonable Potential analysis showing calculated WQBELs? Dissolved Oxygen calculations? | X | | X | | 4. Complete Fact Sheet? 5. A Priority Pollutant Screening to determine parameters of concern? 6. A Reasonable Potential analysis showing calculated WQBELs? 7. Dissolved Oxygen calculations? | X | | X
X | | 5. A Priority Pollutant Screening to determine parameters of concern?6. A Reasonable Potential analysis showing calculated WQBELs?7. Dissolved Oxygen calculations? | X | | X
X | | 6. A Reasonable Potential analysis showing calculated WQBELs?7. Dissolved Oxygen calculations? | X | | Х | | 7. Dissolved Oxygen calculations? | X | | Х | | | X | | _ | | o. whole emplet toxicity rest summary and allalysis: | Х | | X | | 9. Permit Rating Sheet for new or modified industrial facilities? | • | | | | | | | | | 1.B. Permit/Facility Characteristics | Yes | No | N/A | | 1. Is this a new, or currently unpermitted facility? | | X | | | 2. Are all permissible outfalls (including combined sewer overflow points, non-process water and | T_{X} | | | | storm water) from the facility properly identified and authorized in the permit? | | | | | 3. Does the fact sheet or permit contain a description of the wastewater treatment process? | X | | | | 4. Does the review of PCS/DMR data for at least the last 3 years indicate significant non- | | X | i | | compliance with the existing permit? 5. How there have a proper in stream flow phometricities since the last normit was developed? | | X | | | 5. Has there been any change in streamflow characteristics since the last permit was developed? | + | | | | 6. Does the permit allow the discharge of new or increased loadings of any pollutants?7. Does the fact sheet or permit provide a description of the receiving water body(s) to which the | | X | | | facility discharges, including information on low/critical flow conditions and designated/existing uses? | x | | | | 8. Does the facility discharge to a 303(d) listed water? DOWNSTREAM | | X | | | a. Has a TMDL been developed and approved by EPA for the impaired water? | Х | | | | b. Does the record indicate that the TMDL development is on the State priority list and will | + | | | | most likely be developed within the life of the permit? | | ļ | X | | c. Does the facility discharge a pollutant of concern identified in the TMDL or 303(d) listed water? | | х | | | 9. Have any limits been removed, or are any limits less stringent, than those in the current permit? | | X | | | 10. Does the permit authorize discharges of storm water? | | X | | | I.B. Permit/Facility Characteristics - cont. | Yes | No | N/A | | 11. Has the facility substantially enlarged or altered its operation or substantially increased its flow or production? | | Х | | | 12. Are there any production-based, technology-based effluent limits in the permit? | X | | | | I.B. Permit/Facility Characteristics - cont. | Yes | No | N/A | |---|-----|----|-----| | 11. Has the facility substantially enlarged or altered its operation or substantially increased its flow or production? | | Х | | | 12. Are there any production-based, technology-based effluent limits in the permit? | Х | | | | 13. Do any water quality-based effluent limit calculations differ from the State's standard policies
or procedures? | | | Х | | 14. Are any WQBELs based on an interpretation of narrative criteria? | | | X | | 15. Does the permit incorporate any variances or other exceptions to the State's standards or regulations? | | х | | | 16. Does the permit contain a compliance schedule for any limit or condition? | | X | | | 17. Is there a potential impact to endangered/threatened species or their habitat by the facility's discharge(s)? | Х | | | | 18. Have impacts from the discharge(s) at downstream potable water supplies been evaluated? | Х | | | | 19. Is
there any indication that there is significant public interest in the permit action proposed for this facility? | | х | | | 20. Have previous permit, application, and fact sheet been examined? | X | | | # Part II. NPDES Draft Permit Checklist # Region III NPDES Permit Quality Review Checklist - For Non-Municipals (To be completed and included in the record for all non-POTWs) | (To be completed and included in the record for <u>all</u> non-POTWs) | | | | |--|-----|----|----------| | II.A. Permit Cover Page/Administration | Yes | No | N/A | | 1. Does the fact sheet or permit describe the physical location of the facility, including latitude and longitude (not necessarily on permit cover page)? | Х | | | | 2. Does the permit contain specific authorization-to-discharge information (from where to where, by whom)? | Х | | | | II.B. Effluent Limits – General Elements | Yes | No | N/A | | 1. Does the fact sheet describe the basis of final limits in the permit (e.g., that a comparison of technology and water quality-based limits was performed, and the most stringent limit selected)? | х | | | | 2. Does the fact sheet discuss whether "antibacksliding" provisions were met for any limits that are less stringent than those in the previous NPDES permit? | | | Х | | II.C. Technology-Based Effluent Limits (Effluent Guidelines & BPJ) | Yes | No | N/A | | 1. Is the facility subject to a national effluent limitations guideline (ELG)? | | X | 1 | | a. If yes, does the record adequately document the categorization process, including an
evaluation of whether the facility is a new source or an existing source? | | | х | | b. If no, does the record indicate that a technology-based analysis based on Best Professional
Judgement (BPJ) was used for all pollutants of concern discharged at treatable
concentrations? | х | | | | 2. For all limits developed based on BPJ, does the record indicate that the limits are consistent with the criteria established at 40 CFR 125.3(d)? | | | Х | | 3. Does the fact sheet adequately document the calculations used to develop both ELG and /or BPJ technology-based effluent limits? | | Х | | | 4. For all limits that are based on production or flow, does the record indicate that the calculations are based on a "reasonable measure of ACTUAL production" for the facility (not design)? | | | Х | | 5. Does the permit contain "tiered" limits that reflect projected increases in production or flow? | 1 | Х | | | a. If yes, does the permit require the facility to notify the permitting authority when alternate
levels of production or flow are attained? | | | х | | 6. Are technology-based permit limits expressed in appropriate units of measure (e.g., concentration, mass, SU)? | х | | | | 7. Are all technology-based limits expressed in terms of both maximum daily, weekly average, and/or monthly average limits? | | Х | | | 8. Are any final limits less stringent than required by applicable effluent limitations guidelines or BPJ? | | Х | A Le | | II.D. Water Quality-Based Effluent Limits | Yes | No | N/A | | Does the permit include appropriate limitations consistent with 40 CFR 122.44(d) covering
State narrative and numeric criteria for water quality? | х | | | | 2. Does the record indicate that any WQBELs were derived from a completed and EPA approved TMDL? | | | Х | | 3. Does the fact sheet provide effluent characteristics for each outfall? | X | | 1: | | 4. Does the fact sheet document that a "reasonable potential" evaluation was performed? | X | | <u> </u> | | a. If yes, does the fact sheet indicate that the "reasonable potential" evaluation was performed in accordance with the State's approved procedures? | Х | | | | b. Does the fact sheet describe the basis for allowing or disallowing in-stream dilution or a
mixing zone? | | | X | | A calculation procedures for all pollutants | that were found to | Х | | | |--|---|--|---
--| | | 1 | Λ | | | | 3 3 4 46 3 3 1 1 3 4 3 5 3 122 3 3 3 5 7 8 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | - | | at the "reasonable potential" and WLA calc | | | | l v | | * - | bient/background | | | X | | | 1 66 | | | | | | | X | | | | nit consistent with the justification and/or d | locumentation | | | x | | | | | | х | | | | | | х | | | in accordance with | Х | | | | | | Ves | No | N/A | | | 2 | | 110 | 1177 | | = = | | ^ | | 750 | | | ned a monitoring | | | | | | ormed for each | | v | | | - | | | Λ | | | r Whole Effluent Toxicity in accordance w | ith the State's | | | x | | | | Vac | No | N/A | | ent and implementation of a Best Manager | ment Practices | 103 | | 1 17,7 | | | nent i factices | | X | · App or | | | th the RMPs? | | | X | | | | | | | | schedule(s), are they consistent with status | tory and regulatory | | | X | | | RE, BMPs, special | | į | Х | | | | Ves | No | N/A | | FR 122 41 standard conditions or the State | equivalent (or | 103 | 110 | + | | R 122.41 Standard Conditions of the State | equivalent (of | X | | 1 T | | FR 122.41 | | | | | | | Reporting Requ | irements | | | | Duty to provide information | | | | | | Inspections and entry | | | pliance | | | Monitoring and records | Transfers | | | | | Signatory requirement | | | | | | Bypass | | | les | | | Upset | | | ce | | | | | | v | | | | available)? ric effluent limits for all pollutants for which it consistent with the justification and/or of long-term (e.g., average monthly) AND shainstantaneous) effluent limits established? The initial paper print using appropriate units of measure (e.g., average monthly) and shainstantaneous) effluent limits established? The initial paper print using appropriate units of measure (e.g., average monthly) and the facility applied for and was grant specifically incorporate this waiver? It is that the facility applied for and was grant specifically incorporate this waiver? It is that the facility applied for and was grant specifically incorporate this waiver? It is that the facility applied for and was grant specifically incorporate this waiver? It is that the facility applied for and was grant specifically incorporate this waiver? It is that the facility applied for and was grant to be perfectly applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant to be perfectly in accordance with the facility applied for and was grant | ic effluent limits for all pollutants for which "reasonable nit consistent with the justification and/or documentation I long-term (e.g., average monthly) AND short-term (e.g., instantaneous) effluent limits established? Trimit using appropriate units of measure (e.g., mass, in "antidegradation" review was performed in accordance with tion policy? Requirements In a monitoring for all limited parameters? In a that the facility applied for and was granted a monitoring a specifically incorporate this waiver? I cal location where monitoring is to be performed for each or Whole Effluent Toxicity in accordance with the State's I call location where monitoring is to be performed for each or Whole Effluent Toxicity in accordance with the State's I call location where monitoring is to be performed for each or Whole Effluent Toxicity in accordance with the BMPs? Eschedule(s), are they consistent with statutory and regulatory and implementation of a Best Management Practices Performed for each or Whole Effluent Toxicity in accordance with the BMPs? Eschedule(s), are they consistent with statutory and regulatory and implementation or the State equivalent (or FR 122.41 standard conditions or the State equivalent (or FR 122.41 Property rights Reporting Requirement Anticipated Transfers Signatory requirement Monitoring and records Transfers Signatory requirement Monitoring Monitoring Compliance Office and Planned Compliance Upset 24-Hour re | available)? ice effluent limits for all pollutants for which "reasonable X nit consistent with the justification and/or documentation I long-term (e.g., average monthly) AND short-term (e.g., instantaneous) effluent limits established? Trmit using appropriate units of measure (e.g., mass, in "antidegradation" review was performed in accordance with tion policy? Requirements The equirements are that the facility applied for and was granted a monitoring to a specifically incorporate this waiver? I call location where monitoring is to be performed for each for Whole Effluent Toxicity in accordance with the State's The equirement and implementation of a Best Management Practices are schedule(s), are they consistent with statutory and regulatory and inspections? FR 122.41 standard conditions or the State equivalent (or X) FR 122.41 Property rights Reporting Requirements Duty to provide information Inspections and entry Monitoring and records Signatory requirement Bypass Compliance schedule 24-Hour reporting Other non-compliantional standard condition (or the State equivalent or more | available)? ice effluent limits for all pollutants for which "reasonable X int consistent with the justification and/or documentation I long-term (e.g., average monthly) AND short-term (e.g., instantaneous) effluent limits established? rmit using appropriate units of measure (e.g., mass, in "antidegradation" review was performed in accordance with tion policy? **equirements** **main antidegradation of all limited parameters?* **aute that the facility applied for and was granted a monitoring specifically incorporate this waiver? **ical location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring is to be performed for each is all location where monitoring reports is all location where monitoring and records is all location where monitoring reports is all location where monitoring reports is all location port is all locat | # Part III. Signature Page Based on a review of the data and other information submitted by the permit applicant, and the draft permit and other
administrative records generated by the Department/Division and/or made available to the Department/Division, the information provided on this checklist is accurate and complete, to the best of my knowledge. | Name | Douglas Frasier | |-----------|--------------------------------| | Title | VPDES Permit Writer, Senior II | | Signature | Oml Jania | | Date | 0
1 November 2012 |